lonization energies of van der Waals clusters

Thomas Fiegele
Gernot Hanel
Michael RUmmele
Olof Echt

Sara Matt-Leubner
Paul Scheier

Tilmann Mark

Institut fir lonenphysik, Innsbruck
permanent address: University of New Hampshire, USA

EPIC Meeting, Obergurgl, June 18 — 23, 2004



Innsbruck




» Motivation
» EXperiment
» Results & Discussion
» Conclusion




» lonization mechanism?

» Structure of 1onic core?

»Work function of solids?

» Dissociation energy of cluster ions?




lonization mechanism

Vertical ionization? 15.5
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lonization mechanism: El versus Pl

155
15.0F

Electron impact (EI) vs. photoionization (PI) 1451

Is it really true that < 14.0F

»Resolution (El) << Resolution (PI1)? @ 1351

»El is a vert. process while Pl reaches adiab. values? S 130}

»PI can distinguish between vert. and ad. thresholds? Scj 125]
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a E lonic core

From theory & experiment:
small n (> 2): trimer or tetramer

large n: dimer

Xe (Xe)t Xe, (Xey)*
Xe.*: structural isomers :
5 b
Gascon et al., JCP 117 (2002) 99 0 © @ ©
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Doltstinis and Knowles, 1998 ® s ...



a E Size dependence and “workfunction”

62 1 2 1 r, = cluster radius
I, = | )+_ 1-= | = |(oo) € 1__ r,= eff. monomer radius
2r0f n = cluster size

= dielectri _
L bulk ¢ = dielectric const

Insulator: (o)
5.0 .
L Na, ? Electron affinity
>
D 45F |
% i . o vacuum level
o 40k od )/ \ conduction band
2 S /Q.Q/ ¢
S 3 i
S |
S 351 % 5 Egap
g / 21
307 o Wartin etal I valence band
e |oo Homer et al, de Heer 1993
2.5 1 1 1 1 1 1 1 1
0.0 0.2 0.4 0.6 0.8

Cluster size n'1/3
Sodium work function
old: 2.28 eV new: 2.75 eV



aé Dissociation energy of cluster ions

In

An AvtA+re - D" =D+ 1, -
I + /
AT+e D * T

small & easily estimated

Need adiabatic ionization energies!
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ﬁ Detector

Quadrupole
mass
spectrometer

Hemispherical
electron monochromator

»Hemispherical electron monochromator
»Electron energy resolution: FWHM > 30 meV
»Maximum electron current: 5 nA

»Electron energy range: 0-1000 eV

»Mass range: 2000 Thomson



a E Electron resolution

lon yield (arb. units)
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aé Accuracy of thresholds

Comparison with NIST values. Calibration: 1E(Xe) = 12.130 eV
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aé Data analysis: Eyeballing thresholds....

PEPICO

photoionization
Dehmer & Pratt, JCP 76 (1982)
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function. Rather, several
experimentators have
independently given
their judgement and
estimate for error bars.




Data analysis

PHYSICAL REVIEW VOLUME 90, NUMBER 5 JUNE 1, 1953

The Threshold Law for Single Ionization of Atoms or Ions by Electrons

Grroory H. WANNIER
Bell Telephone Laboralories, Murray Hall, New Jersey
(Received February 3, 1953)

When an electron hits an atom or ion, it may knock off an electron, This process is fundamental in almost
all types of gas discharge. The reaction iz endothermic; hence there is a threshold value in the electron
energy below which it does not occur, In this paper, the dependence of the vield on the energy just above
this threshold is derived. The derivation is not rigorous because it circumvents some of the difficulties of
the three-body problem by applying ergodicity, albeit in a weakened form, The result is that, for atoms,
the vield rises as the 1.127th power of the energy excess. For ions the exponent lies between this number

and unity,
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Effect of finite electron resolution

Fit function

f(E)=b+c(E—-1)P
=b ifE<I

lon signal (kHz)

May fold with energy
distr. of electron beam

Electron energy (eV)



a E Result: Hydrogen clusters

Innsbruck, electron impact
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aé Hydrogen clusters: The whole picture

Vertical ionization of (H,),
ab-initio MD, Tachikawa, PCCP 2, 2000
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Conclusion: Neither PI nor EIl reach adiabatic threshold for (H,), + e > H;* + H



ea Results: Argon clusters
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a E Small argon clusters
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aé Effect of expansion conditions

Electron impact

Innsbruck
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aé Large argon clusters
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aa Large argon clusters: Experiment and theory
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Stampfli & Bennemann, Ber. Bunsenges. Phys. Chem. 96 (1992) 1243

autoionizing Rydberg orbit

cluster

too small
too high cluster radiusr <7 A: r>7A:
MENErY adiabatic transition vertical transition

Adiabatic transition via autoionizing Rydberg orbit requires:
»Orbit large (outside of cluster)
»Orbit small (at least = 1 eV below vertical transition)



aa Any experimental evidence for transition?
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ea Possible problem with concept of autoionizing states

Last and George, JCP 98 (1993) 6406, diatomics-in-ionic-systems calculations
1. The interaction in Ar " is very different from that in Ar_*, for n > 2.

2. For nearly all low-lying states, and for all cluster sizes except Ar,”, the
interaction with neutral atoms is repulsive.

3. Inthe excited Ar,;" clusters, all 12 outer Ar atoms in all excited states
asymptotic to the Ar” (4s) atomic states are subjected to repulsive forces...
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1. Resolution of EI (< 100 meV) comes close to P1 (30 meV)

2. For Ar,*, El reaches adiabatic threshold even though the adiabatic 1E
lies 1.1 eV below the vertical 1E

3. We do not quite reach adiabatic IE for Kr,* and Xe,*
4. Hydrogen dimer (H,), + e > H;* + H: Neither El nor Pl reach adiabatic IE

5. Rare gas clusters Ar, Kr, Xe: No clear evidence for postulated transition
from adiabatic IE for small cluster size to vertical IE for large size.

6. True adiabatic IE of rare gas clusters, n > 4, still unknown



