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Dissociation Induced by Electron Collision

• Electronic excitation to dissociative states
• Dissociative electron attachment (DEA)

– Enhanced by resonances which temporarily trap scattered 
electron (time delay)

• One-electron resonances (shape resonances)
• Two-electron resonances (Feshbach resonances)

– Direct dissociation of negative ion state
• Structure of state can be used to predict fragments

– Predissociative negative ion state (unimolecular reaction 
dynamics)

• Lowest energy products often observed
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Shape Resonances in Electron-Molecule 
Scattering

• As the molecule gets 
larger, the possible 
values of l increase

• For a given molecule, 
the larger the l, the 
higher the barrier

• Shape resonances 
are predicted to occur 
with l = 15 in C60

• Experimental 
observations of 
shape resonances 
with l = 9 at 65 eV in 
the photoionizaiton of 
SF6
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Model Potential with l = 2
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Resonance Trajectory
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Phase Shift Near a Resonance
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Model Potential

• Potential includes
– The static potential
– The Perdew-Zunger DFT correlation potential
– The Hara free-electron-gas exchange (FEGE) potential

• We use approximate FEGE potential with no energy 
dependence.
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Adiabatic Angular Functions

• Full scattering equation

• Adiabatic angular functions Z, where Xi is a symmetry 
adapted spherical harmonic.
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Confocal Elliptic Coordinates

• Confocal elliptic coordinates provide the natural 
coordinate system for diatomic molecules

ξ =
ra + rb

R
→

2
R

r 1 ≤ ξ ≤ ∞

η =
ra − rb

R
→ cos θ( ) −1 ≤ η ≤1

R. W. Zurales, Ph. D. thesis, Texas A&M University, 1997.

ψ ξ,η,φ( )= L ξ( )M η( )Φ φ( )

• For H2
+ this leads to a wave function which is a 

product of functions of each coordinate
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Confocal Elliptic Nodes
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m = 0 Shape Resonances
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m = 0 Shape Resonances

• Confocal
coordinates can 
also be in 
polyatomic linear 
molecules

• Expected σ* anti-
bonding resonant 
state
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SF6 (1s)–1 Photoionization

• Are the confocal
elliptic coordinates 
useful in non-linear 
systems?

• Shape resonance at 
a kinetic energy of 
65 eV

• Due to a high 
angular momentum 
barrier
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SF6 S1s→t1u Resonance at 2547 eV

• Resonant state in 
the plane of four of 
the F atoms

• Nodal lines 
correspond to l = 9 
just outside the F 
atoms

• The tight 1s has a 
strong oscillator 
strength to excite 
this state as an s to 
p transition near the 
S atom
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Electron Scattering from SF6

• At low energy are 
the well known 
valence 
resonances

• At high energy 
are two non-
valence 
resonances

• Much less 
prominent than in 
1s photoionization
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Resonances in e – C60 Scattering

• The adiabatic model (AM) potential yields resonance 
parameters that correspond to the parameters of the 
resonances in the full scattering potential. (All 
energies in eV)

0.233.230.522.76ag

0.0783.980.0032.17hu

Γ AMER AMΓ FullER FullSym
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ag Resonance in e – C60

AM
E = 3.2 eV
Γ= 0.23 eV
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hu Resonance in e – C60

AM
E = 4.0 eV
Γ= 0.078 eV

MBS-SCF
E = 8.8 eV
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Experimental Data for e – Formic Acid

A. Pelc, Chem. Phys. Lett. 361, 277 (2002)

Loss of OH–7.5 eV

Loss of H1.25 eV
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Location of the Poles of S in e – Formic Acid
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Adiabatic Model Potential in e – Formic Acid
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Low Energy A″ (π) Resonance in e – Formic 
Acid
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Low Energy A″ (π) Resonance 
in e – Formic Acid
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High Energy A′ (σ) Resonance 
in e – Formic Acid
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High Energy A′ (σ) Resonance 
in e – Formic Acid
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Comparison With Virtual Orbitals
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Summary for e – Formic Acid 

• Loss of H in low energy resonance is due to A″ (π) 
resonance through indirect fragmentation.

• Loss of OH– is due to A′ (σ) resonance and direct 
fragmentation.

• Diffuse basis sets lead to virtual orbitals that do not 
represent resonant states.
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e – Uracil Experiments

G.  Hanel et al., Phys. Rev. Lett. 90, 
188104(2003)

Gas phase ion yields
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e – Uracil Experiments

M. A. Herve du Penhoat et al., 
J. Chem. Phys. 114,5755(2001).

K. Aflatooni et al., J. Phys. Chem. A 102, 6205 (1998).

H– from Uracil on Pt
Gas phase electron 
transmission spectroscopy 
(ETS)
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Summary of Experimental Data

Loss of OCN–, OCNH25 eV

Loss of OCN–,  CN–, H– (in solid)10 eV

Loss of OCN–, OCNH2, CN–7 eV

Only in ETS3.8 eV

Loss of H1-3 eV
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e – Uracil A″ (π) Resonance Poles
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e – Uracil A″ (π) Resonances
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e – Uracil A′ (σ) Resonance Poles
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e – Uracil A′ (σ) Resonance
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e – Uracil A′ (σ) MBS States
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Summary for e – Uracil

• Low energy resonances seen in TES and H loss 
reactions are due to A″ (π) resonances.

• The high energy A′ (σ) resonance may be 
responsible for at least one of the DEA peaks seen.

• Strong antibonding character in the C2–N3 and N3–C4
bonds may induce first step in fragmentation process 
needed to obtain observed products.
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Glycine Geometries
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e – Glycine Experiments

S. Gohlke, J. Chem. Phys. 116, 10164 (2002)
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e – Glycine Experiments

S. Gohlke, J. Chem. Phys.

116, 10164 (2002)
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Summary of Experimental Data

Loss of NH2
–12 eV

Loss of NH2
–, OH–, H2CN–9.5 eV

Loss of OH, NH2
–, OH–, CN–, 

H2CN–, HCO2
–, OH3

6 eV

Loss of OH5 eV

Loss of H2 eV
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e – Glycine A″ (π) Resonance
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Partial Wave in e – Glycine A″ (π) Resonance 
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e – Glycine A′ (σ) Resonance Poles
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e – Glycine A′ (σ) Resonance States
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e – Glycine A′ (σ) Resonance States
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e – Glycine A′ (σ) Resonance States
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Conclusions for  e – Glycine

• Low energy resonances seen in H loss reactions are 
due to A″ (π) resonances.

• The high energy A′ (σ) resonance may be 
responsible for at least one of the DEA peaks seen.

• Strong σ* character in the resonant state in the C–
NH2 and C–OH bonds can explain the strong OH, 
NH2

–, and OH– loss peaks.
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Conclusion

• The Adiabatic Model can be used to gain a qualitative 
understanding of the one-electron (shape) 
resonances in electron-molecule scattering.

• Some resonances can be described as valence 
virtual orbitals, similar to virtual MBS orbitals 
computed with compact basis set.

• Some resonances are distinctly non-valence.
• Angular momentum barriers provide the trapping 

mechanism.
• Many dissociative attachment process may be due to 

shape resonances and subsequent direct or indirect 
fragmentation.
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e – Uracil A″ (π) Resonances
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e – Uracil A″ (π) Resonances
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