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Dissociation Induced by Electron Collision

« Electronic excitation to dissociative states

 Dissociative electron attachment (DEA)

— Enhanced by resonances which temporarily trap scattered
electron (time delay)

» One-electron resonances (shape resonances)
» Two-electron resonances (Feshbach resonances)
— Direct dissociation of negative ion state
« Structure of state can be used to predict fragments
— Predissociative negative ion state (unimolecular reaction
dynamics)
» Lowest energy products often observed
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Shape Resonances in Electron-Molecule

Scattering

As the molecule gets
larger, the possible
values of / increase

For a given molecule,
the larger the /, the
higher the barrier

Shape resonances
are predicted to occur
with /= 15in Cg,
Experimental
observations of
shape resonances
with /=9 at65 eV in
the photoionizaiton of
SF,
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Model Potential with [ = 2
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Resonance Trajectory
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Phase Shift Near a Resonance

Phase Shift
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Rising phase shift
iIndicates a time
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Model Potential

* Potential includes
— The static potential

— The Perdew-Zunger DFT correlation potential
— The Hara free-electron-gas exchange (FEGE) potential

- We use approximate FEGE potential with no energy

dependence.
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Adiabatic Angular Functions

 Full scattering equation

{cﬁ l(i+1)+kzp(r) Z (r)fj(r)

d 2

- Adiabatic angular functions Z, where X;is a symmetry
adapted spherical harmonic.

Z,(0¢r)= ZX (6.4)Ci,p ()

3¢+, 1 ”}cjp ()= CoV1 )
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Confocal Elliptic Coordinates

« Confocal elliptic coordinates provide the natural
coordinate system for diatomic molecules
T, tn 2

= —>—7r 1L
c R R c

ra;rb —cos(d) —-1<n<l

]7:

- For H," this leads to a wave function which is a
product of functions of each coordinate

(5,71, 9)= LM (1) (#)
R. W. Zurales, Ph. D. thesis, Texas A&M University, 1997.

EPIC 2004, Obergurgl



Confocal Elliptic Nodes
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m = 0 Shape Resonances
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m = 0 Shape Resonances

Confocal
coordinates can
also be in
polyatomic linear
molecules

Expected " anti-
bonding resonant
state
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SF (1s)~! Photoionization

S —

« Are the confocal
elliptic coordinates | 1,,Resonance
useful in non-linear
systems?

« Shape resonance at
a kinetic energy of
65 eV

« Due to a high
angular momentum |
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SFs S1s—t,, Resonance at 2547 eV

Resonant state in
the plane of four of
the F atoms

Nodal lines
correspond to /=9
just outside the F
atoms

The tight 1s has a
strong oscillator
strength to excite
this state as an s to
p transition near the v W
S atom 7 * | 9 A

X (atomic units)

¥ (atomic units)
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Electron Scattering from SF
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Resonances in e — Cy, Scattering

» The adiabatic model (AM) potential yields resonance
parameters that correspond to the parameters of the

resonances in the full scattering potential. (All
energies in eV)

Sym E-.Ful  |T Ful E. AM [T AM
h, 2.17 0.003 3.98 0.078
a, 2.76 0.52 3.23 0.23
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a, Resonance in e — Cg

AM
E=32¢eV
['=0.23 eV

Face View
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h, Resonance in e — Cg,

AM
E=40eV
['=0.078 eV
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Experimental Data for e — Formic Acid
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Location of the Poles of S in e — Formic Acid
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V(r) (eV)

Adiabatic Model Potential in e — Formic Acid
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Low Energy A” () Resonance in e — Formic
Acid
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Low Energy A” (7) Resonance
In e — Formic Acid
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High Energy A’ (o) Resonance
In e — Formic Acid

Trans Formic Acid, 4’ Cis Formic Acid, 4’

E,=1226eV, ' =2.94 eV E,=11.98¢eV,I'=3.35eV

Strong C-O o antibonding character could lead to loss of OH-

EPIC 2004, Obergurgl



High Energy A’(o) Resonance
In e — Formic Acid
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Comparison With Virtual Orbitals

Trans Formic Acid, 4"
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Summary for e — Formic Acid

« Loss of H in low energy resonance is due to A" (x)
resonance through indirect fragmentation.

* Loss of OH~is due to A’ (o) resonance and direct
fragmentation.

« Diffuse basis sets lead to virtual orbitals that do not
represent resonant states.
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e — Uracil Experiments
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e — Uracil Experiments

Uracil ﬂ
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H~ Desorption Yields (arb. units)
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H- from Uracil on Pt

M. A. Herve du Penhoat et al.,
J. Chem. Phys. 114,5755(2001).
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Electron Energy (eV)

Gas phase electron
transmission spectroscopy
(ETS)

K. Aflatooni et al., J. Phys. Chem. A 102, 6205 (1998).
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Summary of Experimental Data

1-3 eV Loss of H

3.8 eV Only in ETS

5eV Loss of OCN-, OCNH,

7 eV Loss of OCN-, OCNH,, CN-

10 eV Loss of OCN-, CN-, H= (in solid)
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e — Uracil A” (#) Resonance Poles
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e — Uracil A” (z) Resonances

Uracil, 4", ER =227¢eV, T=021eV
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e — Uracil A’(o) Resonance Poles
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e — Uracil A’(o) Resonance
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e — Uracil A’ (o) MBS States
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Summary for e — Uracil

- Low energy resonances seen in TES and H loss
reactions are due to A” () resonances.

« The high energy A’ (o) resonance may be
responsible for at least one of the DEA peaks seen.

 Strong antibonding character in the C,—N,; and N;—C,
bonds may induce first step in fragmentation process
needed to obtain observed products.
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Glycine Geometries

Geometry |

Geometry |l
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e — Glycine Experiments
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e — Glycine Experiments

< 404
v &
E’ HCO,
=]
3 45
O 20 amu
=
S
[Wheoer
_/\"\._

0 [ [} ! I 1 I I

60 —|

40+

204

0 Apteptpe e e T

0 2 4 6 8 10 12 14

Electron Energy (eV)
EPIC 2004, Obergurgl

S. Gohlke, J. Chem. Phys.
116, 10164 (2002)



Summary of Experimental Data

2eV Loss of H

S5eV Loss of OH

6 eV Loss of OH, NH,~, OH-, CN-,
H,CN-, HCO,~, OH,

9.5eV Loss of NH,~, OH-, H,CN-

12 eV Loss of NH,~
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e — Glycine A" (n) Resonance

Geom |, 4" Geom II, 4" Geom I, 4"
Eg=3.14eV, '=0.23 eV Eg=3.37¢eV,I'=0.37 eV Eg=2.98¢eV,'=0.26 eV
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Partial Wave in e — Glycine A” (7) Resonance
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E,\ (eV)

e — Glycine A’ (o) Resonance Poles
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e — Glycine A’ (o) Resonance States

Geom |, 4’ Geom II, 4’ Geom Ill, 4’
E,=859¢eV,I'=0.77 eV Ex=7.47eV,T =168 eV E;=8.26¢eV,I' =1.67 eV
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e — Glycine A’ (o) Resonance States

Geom |, 4’ Geom II, 4’ Geom lll, 4’
E;=8.73eV, [ =3.82eV Ep=9.46¢eV, I =1.29eV E;=8.86¢eV,I'=1.24eV
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e — Glycine A’ (o) Resonance States

Geom |, 4’ Geom I, 4’ Geom llI, 4’
Ex=11.99eV,I'=1.94 eV E;=13.00eV, T =1.96 eV Ex=1248¢eV, T =1.92eV
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Conclusions for e — Glycine

« Low energy resonances seen in H loss reactions are
due to A” (7) resonances.

« The high energy A’ (o) resonance may be
responsible for at least one of the DEA peaks seen.

« Strong o character in the resonant state in the C—
NH, and C—OH bonds can explain the strong OH,
NH,~, and OH~ loss peaks.
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Conclusion

The Adiabatic Model can be used to gain a qualitative
understanding of the one-electron (shape)
resonances in electron-molecule scattering.

Some resonances can be described as valence
virtual orbitals, similar to virtual MBS orbitals
computed with compact basis set.

Some resonances are distinctly non-valence.

Angular momentum barriers provide the trapping
mechanism.

Many dissociative attachment process may be due to
shape resonances and subsequent direct or indirect
fragmentation.
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e — Uracil A” (z) Resonances
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e — Uracil A” (z) Resonances

y (au)

Uracil, 4", ER: 6.50eV, T'=1.03eV
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