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1 Purpose of the visit

Recent STM experiments have shown that the modification of localized sur-
face states of semiconductors can be achieved by dopant atoms, which are often
buried deeply beneath the surface [1, 2, 3]. Since semiconductor surfaces are
regarded as important templates for a wide range of applications in nano-scale
devices, a thorough understanding how dopant influence the electronic struc-
ture at the atomic level will play a crucial role in designing and fabricating
microscopic electronic devices in future. To date, however, the theoretical in-
terpretations of STM images of doped semiconductor surfaces has been missing
due to the lack of knowledge of tunnelling mechanism at the interfaces and in-
side the leads (surface and tip). Through this collaboration, we are aiming at a
scheme for calculating coherent electron transport in a complete STM imaging
processes (substrate-interface-vacuum-interface-tip).

The project is based on the density functional theory calculations implemented
in the GPAW package [4]. In the first step, the electronic structures of surface,
tip, surface bulk and tip bulk are characterized from accurate DFT calcula-
tions. The resulted wave functions (Bloch states) can then be represented by
maximally-localized Wannier functions. The localized basis functions together
with the obtained effective potentials can then be employed to construct the
Green’s functions (gTT and gSS) of the semi-infinite surface and tip systems.

We assume that the Green’s functions of tip and surface does not change dur-
ing the STM imaging process. Thus, for each tip-surface configuration, in the
combined system, the tip-surface coupling (VTS and VST ) can be calculated by

VTS = 〈φi|Veff +∇2|φj〉 (1)

where Veff = VS + VT while φi and φj are the localized basis functions of tip
and surface respectively.

VST = V †
TS (2)
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The current value is then given by:

I =
∫

dω(fS − fT )Tr[VST αTT (ω)VTSαSS(ω)], (3)

where
αTT = gTT − g†TT and αSS = gSS − g†SS . (4)

2 Description of the work carried out during the
visit

2.1 Implementation of Hamiltonian calculations within GPAW
framework

The formula used to calculate the Green’s function of a semi-infinite lead (sur-
face or tip) is given by

(zS−H)Gr(ε) = I. (5)

where H and S are the Hamiltonian matrix and overlap matrix of the system
respectively. I is the identity matrix and z = ε + iη, with η being a positive
infinitesimal. However, the H and S cannot be obtained directly because this
kind of system cannot be calculated with DFT. As shown in Fig. 1(a), a typical
surface slab used in DFT calculations is composed of several layers of atoms
and a large vaccum in z direction. This supercell is periodically repeated in
three dimensions. If the surface slab is thick enough, the electronic properties

Figure 1: (a) A typical surface slab can be calculated with DFT, (b) the elec-
tronic properties of the high-lighted atoms (a principal layer) in the slab should
be the same as those of the bulk atoms, (c) the semi-infinite system can be
constructed by following the on-site atoms with infinite number of principal
layers.

of the atoms in the center area, as highlighted in Fig. 1(b), should be the same
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as those of bulk atoms. This periodic layer is called a principal layer of the
semi-infinite system. In this project, the semi-infinite lead is represented by a
group of on-site atoms and an infinite number of principal layers, see Fig. 1(c),
where the on-site part should include at least one principal layer. In addition,
the thickness of the principal layers should be large enough so that they interact
only with the closest neighbours. The Hamiltonian of the semi-infinite system
can then be represented as:

H =




H0 V†
10 0 0 . . .

V10 H1 V†
11 0 0

0 V11 H1 V†
11 0

0 0 V11 H1 V†
11

... 0 0 V11
. . .




. (6)

Here, H0 and H1 refer to the Hamiltonian matrix of the on-site atoms and
principal layer atoms respectively. V10 and V11 represent the interactions be-
tween a principal layer and on-site atoms and between two principal layers. The
Green’s function of the coupled system can then be expressed as

Gr(ε) = (zS0 −H0 −Σr(ε))−1, (7)

the matrix Σr is the self energy which incorporates the coupling of principal
layers to the on-site part of the system.

Σr(ε) = (zS0α −H0α)gr
α(ε)(zS†0α −H†

0α) (8)

Here, S0α and H0α are the coupling of Hamiltonian and overlap matrix and
gr

α(ε) is the Green’s function of the principal layers.

gr
α(ε) = (zSα −Hα)−1 (9)

As can be seen, the calculation of Hamiltonian and overlap matrix is of great
importance to the current calculation Eq. (3). Although the mathematical
formula is quite simple, in practice, the bottle-neck arise from the memory and
efficiency requirements. In this project, instead of projecting basis functions
onto the original unit cell (as shown in Fig. 1(a)), we save the localized functions
in small boxes, the length of which are typically 6-8 Angstroms. Each box
has two labels: corner coordinate and index number. In this case, as shown
in Fig 2, much memory can be saved reading the basis functions. Of more
importance, the integration of the basisfunctions over all grid points can be
performed only between the small grid boxes, this improves the calculation
efficiency dramatically. In the code, the Hamiltonian and overlap matrix can
be calculated for any selected atoms of a system. Once H0, H1, S0, S1, V10,
V11 are known (see Eq. (6)), the Green’s function of a semi-infinite lead can be
evaluated from an utility implemented in GPAW.
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Figure 2: (a) A basis function is projected on the large grid, memory is wasted
for remembering zeros (b) the localized basis functions are saved in a small grid
box, outside of the box the basis function has only zero values. Each box knows
its corner coordinate and index number

2.2 Calculation of VTS and VST

When the tip and surface are close to each other, the Hamiltonian matrix of the
combined system is represented as below:

H =




HTα VTα0 0 0
VT0α HT VTS 0

0 VST HS VS0α

0 0 VSα0 HSα


 . (10)

where, α denotes to the principal layers of semi-infinite systems.

In this project, we assume that when the two leads (tip and surface) are moved
close to each other, their Hamiltonian matrices remain unchanged and so do
the Green’s functions. As the tip move above the surface, for each tip-surface
configuration, the coupling of the systems, i.e. VTS and VST need to be evalu-
ated. In the first step, the basis functions are read from DFT calculations and
then stored in the small grids as shown in Fig. 2. In order to take into account
the periodic conditions in the imaging process, the surface basis functions which
are at the edge of the unit cell are periodically repeated. Since the basisfunc-
tions are quite localized, only a part of the basis functions of the two leads have
non-zero contribution to VTS and VST . In this code, the calculations are only
performed if the surface basis function are close enough to the tip and vice versa.
Secondly, for each given tip-surface configuration, the corner coordinates of the
small grid boxes containing tip basis functions are shifted so that they have the
same origin point as the surface basis functions. Up to this stage, the matrix
VTS can be calculated using Eq. (1). However, one needs to consider that the
Fermi energy of a tip is usually not equal to the Fermi level of a surface. A rigid
shift of the effective potential is required to align the Fermi levels.
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2.3 Calculation of current

When the calculations of Green’s functions and VTS have been done, the im-
plementation of transport calculation is rather straightforward, see Eq. (3).

3 Description of the main results obtained

Through this collaboration, a basic version of STM simulation code has been
implemented in the GPAW package. To perform an STM simulation, one needs
to calculate the isolated tip, surface system and their principal layers in ad-
vance. The calculation of Green’s functions of semi-infinite leads are carried
out automatically. The user then need to indicate the bias voltage as well as
the area of the STM scanning. Form our estimation, the current calculation of
each tip-surface configuration can be finished within one second. This speed is
as good or better than the other STM simulation methods.

The code is written for any localized basis functions, not only Wannier functions
but also LCAO basis functions. For testing purpose, we use an Al nano wire
as the STM tip and an Al chain as the surface. Fig. 3 shows the simulated

Figure 3: STM simulation of an Al nano wire scans another Al nano wire. Vbias

= 1.0 V

image of this model system. It is quite clear that the one peak feature in Fig.
3 consistent with the structures of an Al chain. We then take a step further
to perform the STM simulations of a realistic system, Al tip on a Cu(110) sur-
face. The atomic structure of the surface as well as the simulated images are
shown in Fig. 4. As can be seen, the simulated image fits well to the surface
configurations. Althought a few more complicated tests need to be done in the
future, by now we are confident that this STM code is able to produce correct
STM images for simple modle systems. In the next step, some clean and doped
semiconductor surfaces are going to be investigated.
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Figure 4: (a) The atomic configuration of a Cu110 surface slab (b) the simulated
image with constant height mode. Vbias = -1V

4 Projected publications/articles resulting or to
result from the STSM

Since at the present stage, the implementaion of the STM simulation code within
GPAW can be considered finished and the computational approach working,
the investigation of semiconductor surfaces with charged defects are going to
be published. In addition, to our best knowledge, such a theoretical description
of the STM imaging process has not implemented in any solid state planewave
simulation package. Consequently, documentation of our implementation could
be of interest for the computational Solid State Physics community.
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