Analysis of Biological Structures by Second Harmonic Generation

Paulo A. Ribeiro Optics and Image Group (GOI)

Departamento de Física, CEFITEC, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, P–2829-516 Caparica, Portugal pfr@fct.unl.pt

Motivations

- Share research interests
- Intensify future collaboration in new and related scientific areas

- Actual work
- Near future developments
- Perspectives

GOI's Research Interests

- Optics and Instrumentation
- Adsorption of Organic Molecules processes at Solid/Liquid Interfaces
- Devices and Sensors
- Conductive polymers
- Electroluminescent organic materials
- Non-Linear Optics/Photonics
- Biomatter Analysis
- Biomedics
- Biosensors

Emergent Products

- Flat Panel Displays
- Devices for Optical Communications
- Data Optical Storage
- Solar Cells
- Sensors

Relevant Proprieties for Photonics Applications

- Linear Electrooptic effect
- Second Harmonic Generation SHG > NLO
- Sum Frequency Generation SFG
- Quadratic Electrooptic effect
- Foto-refractive effect: {•Spatial Charge Induction •Isomerization

Nonlinear Optics

$$P = P_0 + \varepsilon_0 \left[\chi^{(1)}E + \chi^{(2)}E^2 + \chi^{(3)}E^3 + \dots \right]$$

$$P(E) \qquad P(E) \qquad P(E$$

Nonlinear Effects

Susceptibility	Description	Applications	
$\chi^{(2)}(-\omega_3;\omega_1,+\omega_2)$	$\begin{array}{c} \omega_1 \\ \omega_2 \\ \chi^{(2)} \end{array} \\ \end{array} \\ \begin{array}{c} \omega_3 = \omega_1 + \omega_2 \\ \omega_2 \\ \end{array} \\ \end{array} \\ \begin{array}{c} \omega_1 \\ \omega_2 \\ \omega_3 \end{array} \\ \end{array} \\ \begin{array}{c} \omega_1 \\ \omega_3 \\ \omega_3 \\ \omega_4 \\ \omega_5 \\ \omega_$	Sum and difference Frequency Generation	
$\chi^{(2)}(-\omega_3;\omega_1,-\omega_2)$	$\begin{array}{c} \omega_1 \\ \omega_2 \\ \omega_2 \\ \end{array} \\ \chi(2) \\ \end{array} \\ \begin{array}{c} \omega_3 \\ \omega_3 \\ \end{array} \\ \end{array} \\ \begin{array}{c} \omega_1 \\ \omega_3 \\ \omega_3 \\ \omega_3 \\ \end{array} \\ \end{array}$	Parametric Amplification	
$\chi^{(2)}(-2\omega;\omega,\omega)$	$\begin{array}{c} \textcircled{0} \\ (2) $	Second Harmonic Generation	
χ ⁽²⁾ (0; ω, –ω)	(ω) $\chi^{(2)}$ (ε) (ε) (ε) (ε) (ε) (ε)	Static Field Generation (Optical Rectification)	
χ ⁽²⁾ (-ω; 0, ω)	$\frac{\omega}{E_{e}} \chi^{(2)} \qquad \qquad$	Light Modulation (Linear electroptic effect)	
χ ⁽³⁾ (-ω; 0, 0, ω)	$\begin{array}{c} \underbrace{\omega} \\ E_{e} \\ \hline \chi^{(3)} \\ k\alpha E_{e} 2 \end{array}$	Light Modulation (Quadratic electrooptic effect or DC Kerr effect)	
χ ⁽³⁾ (-3ω; ω, ω, ω)	$ \begin{array}{c} $	Third Harmonic Generation	
$\chi^{(3)}(-\omega;\omega,-\omega,\omega)$	$\begin{array}{c} \omega \\ I_{\omega} \end{array} \\ \chi^{(2)} \\ k\alpha I_{\omega} \end{array}$	Optical commutation, autofocus, (Kerr optical effect)	
χ ⁽³⁾ (-2ω; 0, ω, ω)	$\begin{array}{c} \omega \\ E_e \end{array} \qquad \begin{array}{c} \omega \\ \chi^{(3)} \end{array} \qquad \begin{array}{c} \omega \\ 2\omega \end{array}$	Second Harmonic Generation induced by static field	

Molecular Electronic Polarizabilities

Molecular Polarizabilities		Relative Susceptibilities $ \chi^{(1)} $	
α ~ 10 ⁻³⁹ C²m²J ⁻¹	$\frac{\alpha}{\varepsilon_0}$ ~ 10 ⁻²⁸ m ³	$\chi^{(1)} = \frac{N\alpha}{\varepsilon_0} ~~1$	
β ~ 10 ⁻⁵⁰ C³m³J-²	$\frac{\beta}{\epsilon_0} \sim 10^{-39} \mathrm{m}^4.\mathrm{V}^{-1}$	$\chi^{(2)} = \frac{N\beta}{\epsilon_0} \sim 10^{-11} \mathrm{m.V^{-1}}$	
γ ~10 ⁻⁶¹ C⁴m⁴J ⁻³	$\frac{\gamma}{\epsilon_0} \sim 10^{-50} \mathrm{m}^5.\mathrm{V}^{-2}$	$\chi^{(3)} = \frac{N\gamma}{\epsilon_0} \sim 10^{-22} \mathrm{m}^2.\mathrm{V}^{-2}$	

Organic Molecules for NLO Applications

$$\mu = \mu_0 + \alpha E + \beta E^2 + \gamma E^3 + \dots$$

Transfer Charge Axis

Molecule	Designation	
CH ₃ CH ₃ N-O-NO ₂	DR1	
HOCH ₂ CH ₂ CH ₃ CH ₂ N N N N NO ₂	DR13	
HOCH ₂ CH ₂ N N N N N NO ₂	DR19	
HOCH ₂ CH ₂ CH ₃ CH ₂ N N N NO ₂	DANS	

Molecular Polarizabilities

Chromophore	Formulae	Maximum Absorption (<i>nm</i>)	Dipole Moment µ(D)	2nd order Polarizability β (m^4 . V ⁻¹)	Melting Point (°C)
DR1	$C_{16}H_{18}N_4O_3$	~502	~8,7	~2x10 ⁻³⁸	160-162
DR13	C ₁₆ ClH ₁₇ N ₄ O ₃	~503	8,6*	2x10 ⁻³⁸ **	122-129
DANS	$C_{16}H_{16}N_2O_2$	427	7,8	2x10 ⁻³⁸	256

* Obtained value by computational simulation via HyperChem.

** Obtained value using the two level energy model and $\Delta \mu_z = \mu_{eq} \sim 8,6 D$.

1 $D=3,336 \times 10^{-30} C.m \begin{cases} HCI~1D \\ H_2O~1,9 D \end{cases}$

$$\beta_{ZZZ}(\omega) = \frac{1}{2\varepsilon_0 \hbar^2} \Delta \mu_Z(\mu_{eg})_Z^2 \frac{\left(3\omega_{eg}^2 - \omega^2\right)}{\left(\omega_{eg}^2 - \omega^2\right)^2}$$

NLO Polymeric Materials

Side-Chain

Main-chain

Side-chain crosslinked

Side-chain with crosslinker

Dendrimers

Electrooptic Proprieties

Material	Electrooptic Coeficient (pm.V ⁻¹)	Relative electric Permissivity ε	Refraction index n
Inorganic Crystals LiNbO ₃	r ₃₃ (633 nm)=30 r ₆₃ (633 nm)=11	$\varepsilon_{11} = \varepsilon_{22} = 78$ $\varepsilon_{33} = 32$ $\varepsilon_{11} = \varepsilon_{22} = 42$ $\varepsilon_{33} = 21$	2,2 1,5
KTP (KTiOPO ₄)	<i>r</i> ₃₃ (633 nm)=35 <i>r</i> ₂₃ (633 nm)=13	$\varepsilon_{11} = \varepsilon_{22} = 11$ $\varepsilon_{33} = 78$	1,7
Organic CrystalsCristais MMONS MNA	r ₃₃ (633 nm)=40 r ₁₁ (633 nm)=67	2,8 < 3,0	2,0 2,0
Organic Salts DAST	r₁₁(633 nm)= 140 r₁₁(820 nm)=400	$\varepsilon_a = 6,4$ $\varepsilon_b = 4,3$	$n_a = 2,1$ $n_b = 1,6$
Sol-Gel	r ₃₃ (633 nm)=30 r ₃₃ (633 nm)=30	~ 3	~1,8
Polymers	30-100	2-3	~1,6

Thin Films Fabrication

- Spin-coating
- Casting
- Sol-Gel
- Langmuir Blodgett
- Layer-by-layer
- Self Assembly

Layer-by-layer technique

Layer-by-layer technique Advantages

- Simplicity
- Water soluble materials
- Substrate type, shape and size independence
- Heterostructures in layers
- Molecular thickness control
- Film architecture control
- Possible lithography

Polyelectrolytes with Photonics Applications

Methacrylic copolymer functionalized with the azo chromophore 4-[N-ethyl-N-(2-hydroxiethyl)]-amino-2´chloro-4-nitroazobenzene (MMADR13)

 $\begin{array}{c} O \\ H \\ S \\ - NH \\ O \end{array} \begin{array}{c} CH \\ - NH \\ - N$

Experimental Results for Electrooptic decay for MMADR13

P.A. Ribeiro et al, Macromolecules 2004, 37, 2618-2624

Orientation Mechanism by Photo-isomerization

Trans-cis conversion rate: $R = I \cos^2(\phi)$

Write-Erase Cycle

Birrefringence induction

Optical Storage

40 bilayers PAH/MMADR13 LbL film

Optical Storage

20 bilayers PAH/PAZO LbL film

SRGs Main Features

- Surface modulations have only been found on materials containing azobenzene chromophores
- Recording process is polarization dependent (*p* being more efficient)
- Surface modulations of 600-1000 nm are easily inscribed on the polymer films
- Efficient SRG writing is achieved in polymers with the azobenzene chromophores attached to the polymer chain, either in the main chain or as a side chain
- SRGs recorded may be erased optically and thermally
- The SRGs are \square shifted with regard to the interference pattern
- Light-driven mass transport is involved (for small irradiance <1 W.cm⁻²)
- Light-driven mass transport starts at the surface
- This phenomena is possible with either continuous or pulsed radiation
- Irradiances of 1000 $mW.cm^{-2}$ (10 mW in 2 mm gives 320 $mW.cm^{-2}$)

SRGs obtained with Gaussian Beams

Tripathy et al. – UMass. EUA

Second Harmonic Generation (SHG) Experimental Setup

SRGs Applications

- Optical Storage
- Relief patterning
- Holography
- Wave Guides
- Liquid Crystal Alignment
- Nanomachines
- Patterns of SHG

Analysis of Biological Structures by Second Harmonic Generation

If one looks at ...

C John Wiley & Sons, Inc.

Thin Films Membranes

Langmuir- Blodget membrane

Molecular organization of the supported membrane prepared by LbL, such as derived from the neutron reflectivity data.

Analyzing Interfaces...

- Difficult to bring powerful methods of spectroscopy
- Traditional absorption, emission and Raman Scattering are generally not able to diferenciate optical signal from surface versus bulk

What about?

- Only noncentrosymetric systems will give a second-harmonic response.
- Center of symmetry is naturally broken at a surface or interface

Large Nonlinear response
 Distinguish bulk from surface

SHG Experimental Setup for Surface Analysis

Kinetics of Langmuir monolayer

(K.B. Eisenthal, Chemical Reviews, 1996, 96,1345)

Monolayers at a liquid/liquid interface

(K.B. Eisenthal, Chemical Reviews, 1996, 96,1345)

What it can be obtained from experiments

- Adsorption strength and surface coverage
- Molecular average orientation
- Surface symmetry
- Interfacial electric field strength
- Reaction kinetics and surface diffusion

Adsorption kinetics

Molecular orientation

Measure

- Measurement of x⁽²⁾ magnitudes
- Relative x⁽²⁾ phases with respect to the fundamental light field (eventually)
- Response of individual molecule calculated or assumed
- Determination of average molecular orientation

Susceptibilities at an interface

Two of the three non-vanishing allowed components of $\chi^{(2)}$ at an interface bounded by a bulk media

 $\chi_{ZZZ}^{(2)} = N_s \beta_{ZZZ} \langle \cos^3 \theta \rangle$

 $\chi_{XYZ}^{(2)} = \frac{1}{2} N_s \beta_{ZZZ} \langle \cos \theta sen^2 \theta \rangle$

Molecular dynamics simulation allows the determination of the orientational distribution

Molecular absolute orientation

Surface Symmetry

Bio-matter Analysis

Generally bio-matter is basically a set of interfaces

- Cellular membranes
- Supramolecular structures within cells and tissues
- Exploit the membrane biophysics
- Detect optical activity and probe chirality (much larger in NLO experiments)

Second Harmonic Generation Imaging Microscopy (SHIM)

A.C. Millard et al, Methods in Enzimology, 2003, 361,47-69.

3D reconstruction of human dermis and dermal blood vessels by **SHIM**

SHG imaging of the native collagen fiber network in the human dermis achieved at 880 nm for the detection of the SHG emission signal at 440 nm (25μ m in depth). Open spherical spaces (asterisks) represent the location of vertical blood vessels that are not detected by SHG at 880 nm.

(P. Friedl, Histochem Cell Biol (2004) 122:183–190)

SHG Applications

- Engineering: laser and photonics
- Biophysics, Medicine: membrane binding and transport, imaging

• Environmental Sciences: air/water; soil/water and air atmospheric ice interfaces

Research Team

- Maria Raposo
- Paulo Limão-Vieira
- Pedro Vieira
- João Lourenço
- Quirina Ferreira
- Manuel Maneira
- Paulo J. Gomes
- MárciaTeruya

Other Collaborators

Portugal

- Ana Maria Botelho do Rego (IST/UTL)
- Carlos Nunes de Carvalho DM/(FCT/UNL)
- Madalena Dionísio (DQ/FCT/UNL)

United Kingdom

- N.J. Mason (Open University)

Brazil

•

- José Alberto Giacometti (FCT/UNESP)
- Osvaldo Novais Oliveira Jr.(IFSC/USP)
- Débora Gonçalves (IFSC/USP)
- Débora Balogh (IFSC/USP)
- Nara C. de Souza(FCT/UNESP)
- David S. dos Santos (IFSC/USP)

Germany

- Roland Steitz (HMI)
- Manuel Gonçalves (Ulm University)

Spain

- António de Saja (Valladolid University)