Elastic and inelastic electron scattering by biomolecules – the first step towards understanding of basic interactions

Bratislav Marinković Institute of Physics, Belgrade

Group: D.Ševic, D.Pavlovic, A.Milosavljevic, M.Pardjovska, V.Pejev, D.Filipovic

COST WG1 meeting, Lisbon, 23-26.02.2006

- Why is it the first step towards understanding of basic interactions?
- What we can learn from differential cross sections?
- What is the relevance of data taken in binary collisions?

Electron spectrometers:

UGRA – designed for gaseous targets; ESMA – for powders

The threshold electron impact spectrum of H₂O

J. Jureta, Eur. Phys. J. D 32 (2005) 319

Institute of Physics, Belgrade

Deoxyribose analogues

Electron interactions with THF (tetrahydrofuran) molecule Energy loss spectra and elastic differential cross sections

THF molecule C_4H_8O

Deoxyribose Analogues

University of Liège and Institute of Physics, Belgrade

Electron interactions with THF (tetrahydrofuran) molecule Energy loss spectra and elastic differential cross sections

Institute of Physics, Belgrade and University of Liège

Electron interactions with THF (tetrahydrofuran) molecule

Energy loss spectra and elastic differential cross sections

Institute of Physics, Belgrade; University of Lisbon

University of Liège and Institute of Physics, Belgrade

Electron interactions with THF (tetrahydrofuran) molecule

Elastic electron scattering

 \Box , Δ ,University of Liège and \bullet ,Institute of Physics, Belgrade

Electron interactions with THFA (tetrahydrofurfuryl alcohol) molecule

Elastic electron scattering

□, University of Liège and ●, Institute of Physics, Belgrade

Milosavljevic et al 2005 Eur. J. Phys. D 35 411. Ed. E. Illenberger

Milosavljevic et al 2006 Eur. J. Phys. D to be submitted

–, Mozejko and Sanche, calculations; •, Institute of Physics, Belgrade

THF

TEA-Triethylamine

Electron induced dissociative ionization of THF

energy and angular distribution of positive ions

DEA

 $e^- + [\mathrm{R}{-}\mathrm{H}] {\,\rightarrow\,} [\mathrm{R}{-}\mathrm{H}]^- {\,\rightarrow\,} \mathrm{R}^* + \mathrm{H}^-$

DD resonant

 $e + [\mathsf{R}-\mathsf{H}] \rightarrow [\mathsf{R}-\mathsf{H}]^{-} \rightarrow [\mathsf{R}-\mathsf{H}]^{*} + e \rightarrow \mathsf{R}^{+} + \mathsf{H}^{-} + e$

DD direct

Institute of Physics, Belgrade and Institute "Jozef Stefan", Slovenia

Glycine

H₂N-CH₂-COOH

Institute of Physics, Belgrade

Energy loss spectra Glycine

Energy loss spectra Glycine

Energy loss spectra Glycine

Institute of Physics, Belgrade

CH₃-CH(NH₂)-COOH

Institute of Physics, Belgrade

Institute of Physics, Belgrade

Institute of Physics, Belgrade

- 1. Why is it the first step towards understanding of basic interactions?
- 2. What we can learn from differential cross sections?
- *3. What is the relevance of data taken in binary collisions?*

1. Why is it the first step towards understanding of basic interactions?

G. Garcia:

•Relevant for modeling of radiative energy deposition models;

•Pathway decisions: Differential elastic and inelastic collision cross sections required;

•Energy deposition in single collision: Experimental energy loss spectra needed.

1. Why is it the first step towards understanding of basic interactions?

Barry D. Michael and Peter O'Neill:

•A clearer picture of the basic mechanisms (and potentially new chemical pathways) that induce DNA damage should also benefit the development of improved radiotherapy strategies for treating diseases such as cancer.

2. What we can learn from differential cross sections?

Compare absolute values and shapes;
Create models for accurate calculations (from simple IAM-Independent Atom Model, complex optical potential models to R-matrix and ab-initio models;

2. What we can learn from differential cross sections?

•Probe type of interaction (F A Gianturco:(i) the longrange nature of the charge-dipole interaction that mixes several channels over an usually large region of electronmolecule distances and (ii) the correct inclusion of the short-range contributions from exchange and polarization forces which alter rather drastically the anisotropy of the electronuclear forces within the molecular volume).

3. What is the relevance of data taken in binary collisions?

•Put certain limits to the strength of interaction;

•Interactions could be smeared by the presence of the other molecules and aggregates;

•We need to start from the binary collisions to in order to understand radiative energy deposition and to include refined effects. Elastic and inelastic electron scattering by biomolecules – the first step towards understanding of basic interactions

Bratislav Marinković Institute of Physics, Belgrade

Group: D.Ševic, D.Pavlovic, A.Milosavljevic, M.Pardjovska, V.Pejcev, D.Filipovic

Thank you for your attention!

COST WG1 meeting, Lisbon, 23-26.02.2006