

Singlet Oxygen Generators

INFORMATION

INFORMATION

Quantum Dynamics Time-scale of the elementary processes

Evolution of the molecular system in time Branching ratio and product distribution

Absorption spectra

^{18 June} 20 07

Quantum Chemical and Dynamical tools for solving photochemical problems

INFORMATION

Quantum Control

Designing laser strategies for maximizing the production of ¹O₂

^{18 June} 20 07

Quantum Chemical and Dynamical tools for solving photochemical problems

$$\mathbf{H}_{\mathbf{el}} \, \Psi_{\mathbf{el}} = \mathsf{E}_{\mathbf{el}} \, \Psi_{\mathbf{el}}$$

Hartree-Fock approximation

Molecular orbital model

In practice: the <u>unknown</u> spatial orbitals (MO) are described as a linear combination of a set of <u>known</u> basis functions $\psi_i = \sum_{\mu=1}^N c_{\mu i} \phi_\mu \qquad \phi_\mu \equiv \text{ one-electron basis function}$

If the basis function contains the atomic orbitals \rightarrow MO=LCAO

> Next problem:

How do we determine the unknown coefficients $c_{\mu i}\,?$

Variational principle= an approximate wavefunction has an energy which is above or equal to the exact energy, and the unknown coefficients are determined so that the total energy calculated from the many-electron wavefunction is minimized.

Basis sets Slater-type orbitals $\phi_{STO} \propto e^{-\xi \cdot r}$ Closest to H atom solutions $\exp(-\alpha r^2)$ Gaussian-type orbitals $\Psi(\mathbf{r})$ $\exp(-\alpha r)$ $\phi_{GTO} \propto e^{-\xi \cdot r^2}$ r Less accurate than STO Fast integral calculation!!

3 SOLUTION: Linear combination of Gaussians

$$\phi_{CGTO} = \sum_{p=1}^{L} d_{p\mu} \phi_p^{GTO}$$
 L=length of contraction
contraction $p=1$ primitives

Number of basis sets used

1s

Minimal basis set: using the minimum number of basis functions 1s,1s'

DZ: doubling all basis functions

TZ: contains 3 times as many basis functions as the minimal basis set

Any Extras....?

Polarization functions: higher angular momentum functions $\star_{or}(d,p)$

p orbitals are used for the polarization of s orbitals d orbitals are used for the polarization of p orbitals

Diffuse functions: small exponents to describe weakly bound electrons

Examples: anions, Hydrogen bonds

. . . .

Type of basis sets

Pople basis sets

Split-valence: 3-21G, 6-31G, 6-311G,...

Dunning basis sets, ANO basis sets, Core correlated...

Electronic correlation

TWO APPROXIMATIONS:

- Our wavefunction consists on one single slater determinant
- Use of <u>limited basis set</u> in the orbital expansion

MAIN DEFICIENCY:

lack of correlation between motion of the electrons

• MP2, MP3, MP4....

In principle, leads to good results, but perturbation must be <u>small</u>

Configuration interaction

Multiconfigurational methods

When a single Lewis structure is not enough.....

- excited states
- diradicals
- often transition states

Coefficients in front of the determinants are optimized

MOs used for the construction of the determinants are also optimized

CASSCF (Complete Active Space Self Consistent Field)

 Select electrons and orbitals involved in the chemical process CASSCF(n, m) n number of electrons m is the number of orbitals

CASSCF (Complete Active Space Self Consistent Field)

Density functional Theory (DFT)

In Hartree-Fock

 $\Psi(\mathbf{X}_1, \mathbf{X}_2, \dots, \mathbf{X}_N)$

Exact Hamiltonian, but approx. wavefunction.

ELECTRON DENSITY

Important Saving: The wavefunction depends on 3N spatial coordinates + Spin The electron density depends just on 3 spatial variables

Principles of DFT

The ground state density of the system is enough to obtain the energy and other properties.

Variational principle: for any trial density ρ the energy will represent an upper bond to the ground state energy E_0

Exact wavefunction, but...unknown Hamiltonian!!!

Looking for an approximate Exchange Correlation functional

$$F_{XC} = f_X + f_C$$
 Exchange + Correlation

VWN (Vosko, Wilk and Nusair)

GGA

LDA

B-P86 (Becke88 and Perdew86)

Hybrid Functionals

B3-LYP (Becke 3 parameter functional-Lee Yang Paar)

Excited States Time-Dependent Density Functional theory

Goal: Follow the evolution molecular system in real time

Time dependent Schrödinger equation

$$i\hbar \frac{\partial}{\partial t} |\Psi_{tot}(t)\rangle = \hat{H}(t) |\Psi_{tot}(t)\rangle$$

$$\Psi_{tot}(\{\vec{r}_{i}\},\{\vec{R}_{A}\},t) = \sum_{el} \psi_{el}(\{\vec{r}_{i}\};\{\vec{R}_{A}\})\psi_{nuc}^{el}(\{\vec{R}_{A}\},t)$$
$$\hat{H}(t) = \hat{H} - \vec{\mu} \cdot \vec{E}(t)$$

1. Obtention of an initial wavefunction

Solution of the time independent nuclear Schrödinger equation

Numerically: FGH (Fourrier Grid Hamiltonian)

2. Propagation: solution of the TDSE

Wavepacket: coherent superposition of stationary states

Quantum Chemical and Dynamical tools for solving photochemical problems

Conventional chemical control

Mode-selective chemistry

Fails in many cases since bonds are not independent!!

energy flows between them: IVR

CPL 126 (1986) 541.

Judson-Rabitz Optimal Control Theory

" Teaching laser to control molecules"

Rabitz, PRL <u>68</u> (1992) 1500.

Bibliography

Introduction to computational chemistry. Frank Jensen. Wiley

Modern Quantum Chemistry. Szabo and Ostlund. Dover

Introduction to quantum mechanics. A time dependent perspective. Tannor. University Science Books.