
Simulations of nonadiabatic dynamics
by on-the-fly semiempirical and QM/MM

methods.

Maurizio Persico

Coworkers:
Cosimo Ciminelli, Francesco Evangelista,
Giovanni Granucci, Alessandro Toniolo

Dipartimento di Chimica e Chimica Industriale,
Università di Pisa.



Semiclassical simulations of photochemistry:
our options.

• The nuclear dynamics is represented by a swarm of classical trajectories; each

trajectory runs on a given adiabatic PES, but it may jump to another PES

at any time (surface hopping).

• The electronic wavefunction Ψ(t) evolves in time according to the TDSE:

i d
dt
|Ψ(t)〉 = Ĥel(t) |Ψ(t)〉

• Ψ(t) is expanded in the basis of the N lowest adiabatic states ψK :

|Ψ(t)〉 =
∑
K AK(t) |ψK(t)〉

and PK(t) = |AK |2 are the adiabatic probabilities.

• Switching from an adiabatic surface to another depends on the PK(t) prob-

abilities, according to Tully’s surface hopping algorithm.

• Initial coords. and momenta in the ground state are sampled according to

Wigner or Boltzmann distributions; each trajectory starts with a vertical

excitation.

• Observables are computed as averages over many trajectories.



The “direct” strategy.

• The adiabatic electronic states |ψK〉 and energies EK are computed at each

step of the trajectory by a semiempirical NDO method.

• CI wavefunctions are built with MO’s obtained by floating occupation SCF.

• The semiempirical parameters are optimized so as to reproduce ab initio or

empirical data.

• The TDSE is integrated by expansion on a “locally diabatic” basis, i.e. a set

of electronic states |ηI〉 such as to annihilate the projection of the dynamical

couplings along the nuclear velocity vector:
∑
α

〈
ηI

∣∣∣∣
d

dQα

∣∣∣∣ ηJ
〉
· Q̇α =

〈
ηI

∣∣∣∣
d
dt

∣∣∣∣ ηJ
〉

= 0.

The diabatic states are obtained by rotation of the adiabatic basis, according

to the overlaps 〈ψK(t) |ψK(t + ∆)〉, computed across a time-step: they are

diabatic only with regard to a given trajectory.

See: Granucci and Toniolo, Chem. Phys. Lett. 325, 79 (2000);

Granucci, Persico and Toniolo, J. Chem. Phys. 114, 10608 (2001)
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Example: azobenzene photochemistry.

trans-azobenzene (TAB), S0 cis-azobenzene (CAB), S0

perpendicular invertomer, S0 rotamer, S1

See: Ciminelli, Granucci and Persico, Chem. Eur. J. 10, 2327 (2004)



Azobenzene, vertical excitation energies (eV).

method TAB CAB

S1 S2 S3 S1 S2 S3

semiemp. (this work) 2.94 4.28 4.80 3.23 5.03 5.00

CIPSIa 2.81 4.55 4.61 2.94 4.82 4.86

CASSCF 6e−/5MO 3.48 6.26 6.37 4.53 6.80 6.37

MRSDCIb 3.11 5.39 6.56 3.95 6.12 5.56

CASSCF 10e−/10MOc 3.11 5.56 5.66

CASPT2c 2.34 4.74 4.81

CASSCF 14e−/12MOd 3.18 3.38

CASPT2e 2.70 3.95 4.12

experimentalf 2.80 3.94 2.86 4.38

a Multireference perturbation theory with selected zero-order space; reduced 6-31G basis set with po-

larization functions on N. b Multireference singles and doubles CI; split-valence basis set with

polarization functions on N. c 6-31G basis set. d 6-31G∗ basis set. e ANO basis

set, 3s2p1d for C and N, 2s1p for H. Based on 14e−/12MO CASSCF f Absorption maxima.



Potential energy curves of azobenzene: torsion.
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Potential energy curves of azobenzene: inversion.
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Azobenzene photoisomerization quantum yields.

n→ π∗ excitation π → π∗ excitation

trans→ cis computed 0.33 ±0.03 0.15 ±0.02

experim. 0.20-0.36 0.09-0.20

cis→ trans computed 0.61 ±0.03 0.48 ±0.03

experim. 0.40-0.75 0.27-0.44



Isomerization mechanism, n→ π∗ excitation.

unreact. trajs.
reactive trajs.
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Isomerization mechanism, π → π∗ excitation.

unreact. trajs.
reactive trajs.
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Torsion angle θ = 6 CNNC and surface hopping.

units: degrees and fs n→ π∗ excitation (S1) π → π∗ excitation (S2/S3)

trans→ cis reactive unreact. total reactive unreact. total

initial 〈θ〉 175 176 176 175 176 176

〈θ〉 at first hop S1→S0 104 113 110 111 134 130

〈dθ/dt〉 at first hop S1→S0 -2.0 -0.3 -0.8 -1.7 -0.3 -0.6

〈θ〉 at last hop S1→S0 99 121 114 95 134 128

〈dθ/dt〉 at last hop S1→S0 -2.4 0.2 -0.6 -1.7 0.1 -0.2

cis→ trans reactive unreact. total reactive unreact. total

initial θ= 6 CNNC 5 5 5 5 5 5

〈θ〉 at first hop S1→S0 82 81 82 82 79 80

〈dθ/dt〉 at first hop S1→S0 1.8 0.2 1.2 1.7 0.1 0.9

〈θ〉 at last hop S1→S0 88 81 85 108 80 93

〈dθ/dt〉 at last hop S1→S0 1.7 -0.6 0.8 0.8 -0.9 -0.1





Typical trans→ cis trajectory starting in S1.
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Typical trans→ cis trajectory starting in S2.
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Azobenzenophane trans-trans and cis-trans
structures.



QM/MM strategy.

• The reactive portion of the system (“QM subsystem”) is treated quantum-

mechanically at semiempirical level as before.

• The “MM subsystem” is treated by a force-field: it may be a solvent, a solid

surface, a polymeric matrix... whatever takes part in the dynamics without

undergoing bond breaking or getting electronically excited.

• The interaction between the two subsystems consists of Lennard-Jones and

electrostatic terms:

ĤLJ =
∑
α
∑
β
Aαβ
R12
αβ
− Bαβ

R6
αβ

Ĥelec =
∑
α
∑
β
qαqβ
Rαβ
− ∑

i
∑
β

qβ
Riβ

where α = QM nucleus, β = MM nucleus, i = QM electron.

• The electrostatic QM/MM interaction is added to the semiempirical hamil-

tonian (state-specific treatment of environmental effects).

See: Persico, Granucci, Inglese, Laino and Toniolo, THEOCHEM 621, 119

(2003)



Connection atom approach to covalent QM/MM
interactions.

• The CA is part of the QM subsystem: it owns one electron and carries one

basis function (2s or 3s). Therefore, it makes a single bond with the nearest

QM atom.

• The CA also participates of the MM force field. This ensures the correct de-

pendence of the potential on the bond lengths, angles and dihedrals involving

the CA, the MM atoms and the closest QM atoms.

• The core charge of the CA is qCA = Q + 1 − ∑
β qβ, where Q is the total

charge (but qCA = 1 when computing 1-2 and 1-3 Coulomb terms).

See: Toniolo, Ciminelli, Granucci, Laino and Persico, Theoret. Chem. Acc.

93, 270 (2004)



Model compound for connection atom
optimization.



QM/MM calculation for the azobenzenophane.



Work in progress.



Conclusions.

• Experiments and/or potential energy surfaces are not always sufficient to

fully understand the mechanism of photochemical reactions: simulations of

the nonadiabatic dynamics are needed.

• The direct strategy is the most practical way to run simulations. Semiclassical

dynamics, because of its local character, is most easily coupled with “on the

fly” calculations of electronic quantities, but also certain quantum dynamics

methods can be adapted in the same way (“Full Multiple Spawning” by T.

J. Mart́ınez, Urbana-Champaign).

• The QM/MM approach makes possible to simulate supramolecular systems

(solvent effects, biological matrices, solid state photochemistry, supramolec-

ular devices etc).



More about the Pisa research unit...
Treatment of solvent effects

by a Polarizable Continuum Model (PCM).
Benedetta Mennucci and coworkers.

• The hamiltonian of the solute includes the reaction field generated by the

solvent.

• The solute cavity is of arbitrary shape and the solvent response is computed

in terms of an apparent charge spread on the cavity surface.

• Geometry optimization of the solute molecules can be done for many kinds

of ab initio wavefunctions, with analytical gradients.

• Many static and dynamic properties of solutes can be computed.

• Excited state energies and wavefunctions can be dedermined, taking into

account solvent reorganization.

• Probabilities of excitation energy transfer between solvated chromophores

can be evaluated.


