Charged Particle Track Simulation in Cells: A Tool for Testing Radiation Action Working Hypotheses

Werner Friedland, Peter Jacob, Herwig G. Paretzke GSF-Institute of Radiation Protection

> RADAM – Conference 24 – 27 June 2004 Lyon - France

Overview

Track structure simulation ≻Cross sections ≻Tracks

Target modelling
>DNA
>Structures in cells and tissues

Simulations of biological end points
>DSB induction
>DSB fragment distributions
>HPRT⁻ mutations
>Multiple DNA damage

Inelastic scattering cross sections of electrons in liquid water

Dingfelder et al., Rad. Phys. Chem. 53, 1-18 (1998)

Ionisation cross section of DNA constituents

Bernhardt et al., Int. J. Mass Spectr. 223-224, 599-611 (2003)

Institute of Radiation Protection

Cross sections for ionisations, excitations and charge changing processes of He++, He+ and He^o

~//

Institute of Radiation Protection

Stopping cross section for H and He

Dingfelder et al., Rad. Phys. Chem. 59, 255-275 (2000) Friedland et al, Rad. Phys. Chem. accepted (2004)

%

Tracks from I-125 and I-131 decays Li et al., Radiat Res. 156, 419-429 (2001)

202

1 MeV

 $\Box \Box$

- 199

Linear DNA - Nucleosome - Chromatin fiber

gsf

Simulated stochastic crossed-linker chromatin fibers (GSF and DKFZ)

Models of Chromosomes by KIP+DKFZ (A+MLS) UCB (RW/GL) GSF (C)

Institute of Radiation Protection

Model of 0.5 Mbp chromatin domain

Institute of Radiation Protection

Chromatin fiber on voxel grid

DNA target model: Human fibroblast cell 23 out of 46 human chromosomes in cylindrical nucleus

Models of chromatin fiber structures

Friedland et al., Radiat. Res. 150, 170-182 (1998)

Size distribution of small DNA fragments

Bernhardt et al., Int. J. Mass Spectr. 223-224, 579-597 (2003) Exp.: Rydberg et al., J. Mol. Biol. 284, 71-84 (1998)

%

Institute of Radiation Protection

SSB and DSB yield for different DNA target models

ESL Institute of Radiation Protection

DSB induction from p and He ion irradiation

DNA Fragments: Fraction of DNA

Relative distribution of DNA fragments due to 1 Gy irradiation with p and He ions

Frequency of multiple DNA damage from p and He ion irradiation

Frequency of multiple DNA damage and cell inactivation for H and He ion irradiation

Chromatin fiber loop with HPRT gene

Friedland et al., Radiat. Res. 155, 703-715 (2001)

Patterns of exon deletions

Deleted exons								Number of mutants					
								Experiment	Simu	lation	Experiment	Simu	lation
								⁶⁰ Co vyrays	⁶⁰ Co γ₅gays		80 kV x-rays	220 kV x-rays	
								1 - 4 Gv	2 (Gv	2 Gv	2 Gy	
1	2	3	4	5	6	78	3	Yamada	P1 P2		Nelson	P1	P2
			-					2	2.0	2.0	ο	16	20
^	V							2	1.2	1.2	0	4.0	3.0 1.0
	^	V						1	1.0	1.0		2.1	1.0
		^	V					2	1.4	1.4	2	2.2	1.8
			^	V				3	1.4	1.4	2	2.0	2.Z 1.Q
				Λ	Y				1.2	1.2	4	2.1	2.0
					Λ	V		2	1.0	1.0	2	2.5	2.0
						~	Y	3	1.0	1.4	С 2	2.4	1.0
X	X								0.22	0.21	1	0.4	0.23
		Y						1	0.22	0.21	· · · ·	0.7	0.20
	^		Y					1	0.4	0.4		0.1	0.0
		^		V					0.014	0.004	1	0.013	0.013
			^	^		V	\mathbf{v}		0.15	0.14		1.6	0.20
X	Y	V							1.2	1 1		2.1	
					X	X	X		0.4	0.3	1	0.6	0.5
		V	V					2	0.4	0.3		0.6	0.5
	~	~		×.	Y	Y	V		0.3	0.3	1	0.0	0.5
Y	V_	V.	×						0.4	0.4		0.7	0.5
			 		Y	Y	V		1 1	1.0	3	22	1.0
		V_							0.10	0.17	<u> </u>	0.4	0.3
	Y								12	1.2		2.5	2.1
X	 X	 X	 X	 X	 X	 X	<u> </u>	26	26.8	27.1	41	44 1	49.6

Deletion size distribution

Yield of photon induced dicentrics

Electron track induced by 7 keV photon

Relative frequency of three track ends

ESI Institute of Radiation Protection

Comparison between experiment and simulation

°**/**/

Hypothesis

Temporally coincident multiple DNA damage

- on different chromosomes
- in some ten kbp genomic distance
- in a few hundred nm spatial distance may be of rather high importance for cellular radiation effects

