Tracks of Charged Particles and Their Characteristic Quantities in Gases

The greater part of radiation damage to genes or cells starts with the initial damage to segments of the DNA

<u>Traditional Practice</u>: Radiation damage is described by macroscopic quantities like LET and absorbed dose

Electron Degradation in Gases: Measurement of W-values or Ionization Ranges

W-value of Electrons in Liquid Water and Molecular Nitrogen

A Selection of Electron Cross Sections of Liquid Water and Molecular Nitrogen

Electron Mass Ranges in Liquid Water or Molecular Nitrogen

The Traditional Model of Particle Tracks Based on Condensed Histories

The Stochastics of Electron Energy Degradations

The Influence of Angular Scattering on Depth-Dose Distributions

Elastic Cross Section of Molecular Nitrogen for Electrons

Macroscopic and Microscopic Aspects of Electron Tracks

Mean Free Path Lengths of Electrons in Liquid Water or Molecular Nitrogen

Mean Free Ionization Path Lengths of Charged Particles in Liquid Water

Track Segments, 100 nm in Length, in Liquid Water

General Aspect of Ionization Cluster-size Formation (De Nardo et al. (2002))

<u>Definition:</u> The cluster size is exactly the number *v* of ionizations produced by a particle in a specified piece of matter

General Aspect of Ionization Cluster-size Formation

The mean cluster size is given by the first moment:

 $M_1(T) \approx L_{\rm travel} / \lambda_{\rm ion}(T)$

<u>Definition:</u> $P_{v}(T)$ is the probability that exactly the cluster size v is produced by a particle at energy T in a specified piece of matter.

The Jet Counter of Pszona et al. (2000)

Ionization Cluster-size Distributions of 4.6 MeV α -Particles in Nitrogen

Ionization Cluster-size Distributions of 4.6 MeV α-Particles in Cylindrical Volumes: Fliquid water with

D = 2nm, compared with nitrogen and propane for (Dp) = 0.2 μ g/cm²

0.24 0.22 0.20 Nitrogen -0 0.18 -**Liquid Water** Propane 0.16 -Nitrogen, 0.289 µg/cm² E^{0.14} Propane, 0.160 µg/cm² 0.10 -0.08 -0.06 -0.04 0.02 -0.00 -2 0 10 8 12 6 cluster size v

Yield of Single Strand Breaks as a Function of Electron Energy

Tracks of Charged Particles and Their Characteristic Quantities in Gases

Macroscopic Targets:

- W-value
- stopping power
- particle range
- absorbed dose

Nanometric Targets:

- interaction cross sections
- stochastics of primary interactions
- fluence