Status of optics modeling at the MLS and at BESSY II

Peter Schmid

Helmholtz Zentrum Berlin

- LOCO
- □ Status of optics' studies
- □ Reducing the coupling
- □ Symmetrizing the optics
- **Results**

Introduction

- LOCO: Linear Optics from Closed Orbits.
- Simulation programs (e. g. MAD) can compute response matrices for a given lattice.
- LOCO uses the opposite approach: Attempt to reconstruct the linear optics from measured response matrices.
- A successful LOCO analysis helps improving the understanding of the status of the storage ring.

Objective

Determining the

- **quadrupole gradients.**
- BPM gains.
- □ calibration factors of the steerer magnets.
- □ conversion factors of the skew quadrupole gradients.
- BPM coupling.
- **quadrupole roll.**
- □ focusing properties of IDs.

Fit parameters for BESSY II

- □ 108 horizontal BPM gains
- □ 108 vertical BPM gains
- □ 80 horizontal corrector magnet gains
- □ 64 vertical corrector magnet gains
- □ 44 circuits (quadrupole gradients)
- in total: M = 404 fit parameters

Measurement data:

- □ $108 \times 80 + 108 \times 64$ data points included in the response matrix
- □ 108 dispersion measurements

in total: N = 15660 data points number of degrees of freedom N - M = 15256

$$\chi^2 = N - M \pm \sigma, \quad \sigma = \sqrt{2(N - M)}$$

Predictor for the statistical error if N - M is asymptotically large.

Best fit

The predictor for the precision of the fit, σ (model – measurement), reaches (almost) the noise level of the BPMs

- Only sextupole family S1 is excited, $I_{S1} = 40 \text{ A}$
- $\begin{tabular}{ll} $$ σ(model $$$$$$$$$$$$$$$$measurement) = $$0.69\,\mu m$ \end{tabular}$
- Average of the BPM σ s: horizontal: 0.59 μ m, vertical: 0.54 μ m

Analysis for different machine settings

HZB Helmholtz

- □ WLS: Wave Length Shifter.
- FFF: Fast Feed Forward (IDs).
- **CQS:** Skew Quadrupoles.
- User optics: All sextupoles including harmonic ones are at standard settings.
- Average of the BPM σs : horizontal: $0.59 \,\mu m$, vertical: $0.54 \,\mu m$

EUROPEAN SYNCHROTRON LIGHT SOURCE XIX

24th November 2011

Setting	$\frac{\chi^2}{DOF}$	σ (model – meas.)
only S1 minimal	1.525	$0.687\mu{ m m}$
+ skews	1.479	$0.672\mu{ m m}$
user optics	3.975	$0.746\mu{ m m}$
+ skews	9.138	$1.046\mu{ m m}$
user optics w/ WLS/FFF	4.350	$0.805\mu{ m m}$
+ skews	8.019	$1.002\mu{ m m}$

Modelling the impact of the WLSs

- □ Wave length shifters focus *only* vertically
 - \rightarrow quadrupoles cannot absorb this effect.
- Modeling of WLS as thin "cylinder lenses" focusing only in the vertical plane.

Results – in comparison with an analysis only employing quadrupoles:

- $\Box \chi^2$ / DOF reduces by a factor of 50.
- $\Box \ \sigma(\text{model} \text{measurement}) \text{ decreases by an order of magnitude.}$

Beta functions: design- and user optics

User optics

EUROPEAN SYNCHROTRON LIGHT SOURCE XIX

24th November 2011

Determining emittances via simulations

Problem:

small vertical emittances cannot be determined with the diagnostic tools available.

Approach:

- □ Fit a skew quadrupole gradient at the location of each sextupole.
- Get the emittances from the Ohmi-Envelope ("coupled" optical functions).

Coupling for given machine settings

Optics	$\langle \epsilon_y angle$	$\kappa = \frac{\epsilon_y}{\epsilon_x}$	$\delta_{y m RMS}$
	[pm rad]	[%]	[mm]
only S1 minimal	14.3	0.22	5.40
only S1/S2 chrom. 0	18.0	0.28	6.78
user optics w/o WLS	74.6	1.13	7.66
user optics w/ WLS/FFF	93.3	1.38	9.91
user optics w/WLS/FFF	99.8	1.48	7.90
u. CQS			

The coupling is mainly induced by the orbit excursions in the harmonic sextupoles and not by the settings of the skew quadrupoles.

- $\Box Coupling \\ \kappa = \epsilon_y / \epsilon_x$
- Vertical Dispersion (RMS) δ_{yRMS}
- WLS: Wave Length Shifter
- ❑ FFF: Fast FeedForward (IDs)
- **CQS:** Skew Quads

Decoupling – iterative process

- Iteration steps while decoupling
- (top panel)vertical emittance
- (bottom panel)vertical dispersion
- user optics including all WLSs and FFF
- □ 15 CQS available.
- only three CQS in dispersive regions

Decoupling – comparing the results with measurements

Criterion: reduction of the (Touschek) life time at large beam current ($I \approx 300 \text{ mA}$)

mode	life time
3rd iteration	$6.9\mathrm{h}$
2nd iteration	$7.0\mathrm{h}$
1st iteration	$7.7\mathrm{h}$
CQS off	11.9 h
CQS standard	$10.7\mathrm{h}$

 \rightarrow The life time can be reduced by 40%.

- All Sextupoles and the WLS are at their standard settings. (user optics)
- The ellipse at the beam profile monitor assumes normal orientation.

Symmetrizing the optics

Objective:

- □ Restoring the dynamic aperture.
- Dialing in the reference optics in a reproducible fashion.

Approach:

- Determine the normalized quadrupole gradients per circuit.
- Changing the quadrupole settings according to

$$\frac{\Delta I_n}{I_n} = -\frac{K_{\text{fit},n} - K_{\text{ref},n}}{K_{\text{ref},n}}$$

employing offset channels at the quadrupole power supplies.

Caveats:

- Quadrupoles at
 BESSY II cannot be powered individually.
- Q1D/T and Q2D/T:
 16 quadrupole each are ganged together.
- Q3D/T, Q4D/T and Q5T can be powered in pairs.

Restoring the beta functions

- User optics without WLSs
- $\square \ \beta_{iref}: \beta \text{ function of}$ the reference.
- $\square \beta_{isym}: \beta \text{ function} \\ \text{of the symmetrized} \\ \text{optics}$
- $\square \beta_{i0}: \beta$ -function before symmetrizing.

Iteration	Beta beat RMS		
	Х	у	
0.	6.95%	4.39%	
1.	0.80%	0.97%	
2.	0.44%	0.22%	

Restoring the phase

- user optics without **WLSs**
- ϕ_{iref} : phase of the reference.
- ϕ_{isym} : phase of the symmetrized optics (2nd iteration).
- ϕ_{i0} : phase before symmetrizing.

The Metrology Light Source

- $\Box \quad \text{Circumference} \\ L = 48 \, \text{m.}$
- □ Nominal Energy E = 629 MeV.
- □ 8 Bending Magnets

 $L_B = 1.2 \,\mathrm{m}.$

Comparing LOCO's predictions with tune shift measurements

Both the dipole gradient and the fringe field were varied during the LOCO analysis.

$$\chi^2/DOF = 2.24$$

 $\Box \sigma$ (model –

meas.) = $0.44 \,\mu\text{m}$

BPM noise:

 $0.33\,\mu\mathrm{m}$

The undulator U180

The undulator U180:

- Electro magnetic undulator with a period length of $\lambda_P = 180 \text{ mm.}$
- □ causes considerable tune shift at lower energies.

Compensation schemes investigated:

- opposite tune
- *first tune then beta*
- "alpha matching"
- □ *tune bump*

Energy	$\Delta \nu_y$	Beta beat		
MeV		max [%]	RMS [%]	
629	0.034	18	11	
450	0.060	34	20	
200	0.223	360	96	

H7R

Compensating the U180

□ Beam Energy is at

$629\,\mathrm{MeV}$

mode	current	life time
	mA	h
standard user mode	135.0	13.9
undulator on	133.3	12.5
opposite tune	132.5	14.6
first tune then beta	131.5	12.6
alpha matching	130.6	14.0
tune bump	128.0	14.4

Compensating the U180 at $200\,{\rm MeV}$

Peter Schmid

Results

- Optics calibration works reliably both at the MLS and at BESSY II.
- □ Fitting almost down to the noise level of the BPMs was achieved.
- Calibrated Model can be employed for realistic simulations.
- A orbit correction including the focussing effects of IDs was build upon the model.
- Decoupling and symmetrizing the optics was successful at BESSY II.
- □ The focussing properties of IDs and the mitigation measures by the TFF were analyzed for the first time.