

Emanuel Karantzoulis on behalf of the Elettra Team

- 1. Introduction Elettra and FERMI@ELettra
- 2. Elettra and its Injector
- **3. How Elettra Operates**
- 4. Top Up
- 5. Performance & statistics
- 6. Upgrade projects

Elettra complex

PADReS

The 2 GeV light source came into operation in 1993 being the first third generation light source for soft-X rays 1 Julliul in Europe.

As injector used a linac (no full energy, injection at 1 GeV)

Until 2007

Since 2011 also a 4th Generation LS

Since 2008 full energy injector (small linac + booster 2005-2008)

Emanuel Karantzoulis

ESLS XIX, ISA, Aarhus, Nov. 23-24th 2011

FEL-1

Elettra consists of:

- 2.4 GeV third generation light source
- 2.5 GeV Booster
- 100 MeV conventional linac
- 26 beam lines (including a SR-FEL) + 2 in construction

FERMI@Elettra consists of:

- Inclusion 1.2 -1.8 GeV conventional S / X band linac with photon injector
- a double x120 m e- beam transport line + undulators
- B 3 beam lines in construction

Some numbers from the lab

- 450 persons (330 (238+92) +120)
- 750 proposals/year (only Elettra)
- 1000 users / year (only Elettra)
- Many publications on scientific magazines (>150/year)
- SR-FEL 10 Phys. Rev. Letters

Elettra functions 24 hours/day and dedicates 5000 h/year to the users

Emanuel Karantzoulis

FERMI main features

FERMI@Elettra single-pass FEL user-facility.

- Two separate FEL amplifiers will cover the spectral range from 100 nm (12eV) to 4 nm (320 eV).
- The two FEL's will provide users with ~100fs photon pulses with unique characteristics.

<u>high peak power</u>	0.3 -
short temporal structure	sub-

- tunable wavelength
- variable polarization
- seeded harmonic cascade

0.3 – GW's range

- sub-ps to 10 fs time scale
- APPLE II-type undulators
- horizontal/circular/vertical
- longitud. and transv. coherence

Emanuel Karantzoulis

FERMI Layout

Emanuel Karantzoulis

Measured HGHG seeded-FEL spectrum

REF: M. Zangrando, C. Svetina, G. Penco

Emanuel Karantzoulis

Elettra beam lines

<u>26 beam lines</u>

of which major upgrades

XRD1

SuperESCA

SR-FEL (2 GeV, currently 1.8 GeV and 130 nm)

2 under construction

Microflurescence

XRD2

an an and	22 ID segments + 1 SCW installed		Brightness of ELETTRA Photon Sources				
and a second sec		6 bending magnet source points serving 8 beam lines + 1 IR			Wavelength(nm) 1000 100 10 1 0.1 10 ³³ 10 ³² 10 ³² 10 ³² 10 ³³ 10 ³² 10 ³³		
ID	type	section	Period (mm)	Nper	gap (mm)	status	40 10<
EU10.0	PM/Elliptical	1	100	20+20	13.5	operating	10 ²⁸ XFEL-100 nm
U4.6	PM/Linear	2	46	2 x 49	13.5	operating	E 10 ²⁷
U12.5	PM/Linear	3	125	3 x 12	32.0	operating	
EEW	EM/Elliptical	4	212	16	18.0	operating	
W14.0	HYB/Linear	5	140	3 x 9.5	22.0	operating	S 10" LUFELE 10"
U12.5	PM/Linear	6	125	3 x 12	29.0	operating	$\frac{10^{22}}{10^{22}}$
U8.0	PM/Linear	7	80	19	26.0	operating	0 10 ²¹ U5.6 E=2 GeV 10 ²¹
EU4.8	PM/Elliptical	8	48	44	19.0	operating	0 mA 10 ²⁰
EU7.7	PM/Elliptical	8	77	28	19.0	operating	10 ¹⁹ 10 ¹⁹ 10 ¹⁹ 10 ¹⁹
EU6.0	PM/Elliptical	9	60	36	19.0	operating	to Short U5.6 1 2 W14.0 10 ¹⁸
EU12.5	PM/Elliptical/Q	P 9	125	17	18.6	operating	a 10 ¹⁷ Short W15.0 5 10 ¹⁷
FEU	PM/Figure-8	10	140	16+16	19.0	operating	10 ¹⁶ Bending Magnet
SCW	SC/Linear	11	64	24.5	10.7	refurbishing	$10^{13} \pm 10^{15}$ $10^{0} 10^{1} 10^{2} 10^{3} 10^{4} 10^{5}$

PM = Permanent Magnet, HYB = Hybrid, EM = Electromagnetic,

SCW = Superconducting, QP = Quasi-Periodic

Emanuel Karantzoulis

ESLS XIX , ISA, Aarhus, Nov. 23-24th 2011

Photon Energy (eV)

Top-up at both 2 GeV (310 mA) & 2.4 GeV (150 mA)

- GeV multibunch / small demand for single bunch / more demand for hybrid (75% of user time)
- a 2.4 GeV multibunch / hybrid (25% of user time)
- 1-1.8 GeV SR-FEL single, 4-bunch (at 1.8 GeV 130 nm)
- 0.8-1.0 GeV 4 bunch, CSR also for pump-probe experiments (use accel. physics time 25% of total)

Fully software controlled. Operators intervene only in case of problems

Users are allowed to change gaps, but not e-beam position/angle

Emanuel Karantzoulis

Pre-injector & Booster

The pre-injector performance is acceptable There is redundancy Effort on water/ambient temp stability Klystron discharges

Booster operates at full cycle (2.5 GeV) and at 2 Hz rep. rate. Full energy injection in Elettra at any energy and with any filling mode (multi-bunch, single- or few-bunch)

- □ Gaining know-how on the power supplies; able to repair them without external help
- Home made modules, redesigning control boards

Emanuel Karantzoulis

Operating in top-up

•Top-up is the usual operating mode at both main operating energies for Elettra users.

Emanuel Karantzoulis

Top-up details

- Fixed current mode (1mA) every 6 min at 2 GeV , 20 min at 2.4 GeV in about 20 pulses at 2 Hz
- Multi-bunch fill of 120 ns pulse from booster, >90 % homogeneity and no contamination of the fill in the SR
- Fast dcct already installed will allow bunch-to-bunch fill for hybrid operations refilling also the single bunch.
- Total current loss budget 10 (5 at 2.4 GeV) mA /hour. This allows efficiencies in the range 100 - 60% otherwise blocks top-up for the rest of the hour (seldom)
- Each beamline is interlocked with dosimeters; above a certain radiation level the beamline is blocked for 4 hours (never happened)
- Upon request gating and additional interface boards are provided.
 To date only 2 beamlines are making use of it

elettra Systems stability during top-up

Emanuel Karantzoulis

ESLS XIX , ISA, Aarhus, Nov. 23-24th 2011

@elettra

Long term orbit stability

from 16/9/2010 00:00 to 20/9/2010 06:00

Emanuel Karantzoulis

ESLS XIX , ISA, Aarhus, Nov. 23-24th 2011

FERM

aelettra

day - night temperature gradient

Occasionally when there is a big temp gradient between day and night the e-orbit follows a day night thermal pattern. The feedback changes the frequency to keep the mean horizontal orbit at zero

About 50 Hz corresponding to 26 um in C

Emanuel Karantzoulis

Reproducibility

Reproducibility mainly depends on thermal equilibrium. Machine (vacuum chamber) need some time after refill to arrive at the previous position settings

Re-inject after 10 min (temperature difference 20°C) from a beamdump to 310 mA

	H [um]	V [um]		
Rms	92	4		
max	207	13		

Horizontal difference can be 0.5 mm if the machine left without beam for 1 hour

Emanuel Karantzoulis

Comparing many orbits in thermal equilibrium (no feedbacks) obtain 10 microns rms difference

The deformation always follows the same pattern

Courtesy S. Krecic

bpm value during thermal drift towards its equilibrium value vs. time

Emanuel Karantzoulis

elettra Operating Performance (User Mode)

Emanuel Karantzoulis

Systems user downtime distribution

Observed (components) fatigue. Note the failure equipartition

Suffered from the cryogenic systems

Some power supplies (dust problems)

Encoders and electronics of some IDs

TMFB and controls

Emanuel Karantzoulis

Emanuel Karantzoulis

Stability and other systems

Elettra has 4 rf single cell cavites installed in the dispersive regions, temp controlled to minimize multibunch instabilities. Three systems work on klystrons and one on IOTs

For longitudinal stability and high lifetime a third harmonic cavity (at 1.5 GHz) is used

Feedbacks: Use 2 transverse (H+V); there is also a longitudinal (but never operated).

For orbit stability after refill a HLS program sets the orbit at its value and then a fast orbit FB (GOF) keeps the positions as set.

Additional: feed forward orbit correctors for IDs, Tune feedback, Mean H-orbit feed back

Emanuel Karantzoulis

Actual

- New undulator (KYMA) for SuperESCA $\sqrt{}$
- □ Low-profile vacuum chambers $\sqrt{}$
- □ Storage ring realignment $\sqrt{}$
- □ BBA √
- □ 8th corrector
- Superconducting wiggler
- Ambient temperature stabilization tough
- Cooling of 24 hot bpms -> intensity increase
- Photon bpm
- PS 300 A module
- Beam damp exhaustive diagnostics
- Control rooms unification and system upgrade

In progress / near future

- Low alpha optics
- In vacuum undulators
- Super- bends
- Skew multipoles

Emanuel Karantzoulis

SuperESCA new undulator

U5.6	KYMA	
	U4.6	
PM/Linear	PM/Linear	
NdFeb	Ndfeb	
56.36mm	46.00 mm	
3x27	2x49	
0.693 T	0.928 T	
19.5 mm	13.5 mm	
90-1000 eV	90 -2000 eV	

Orbit distortion and tune measurements performed with excellent results: Max orbit error 20 μ m rms whereas the max tune shift by 13.5 mm gap was 0.011 (value theory 0.009)

Emanuel Karantzoulis

- Full magnet realignment completed (±0.1 mm) and bpms aligned to (±1 mm)
- All 108 shunt BBA modules used for beam based alignment.
- •All beamlines successfully realigned to zero

Electron orbit (absolute) <0.35 mm rms horizontal and <0.2 mm rms vertical with correctors strength of 2 A rms horizontal (12%) and 0.8 A rms vertical (5%) (max. allowed 16 A)

8th corrector/section

- Magnet in construction
- Changing the vacuum chamber

Emanuel Karantzoulis

24 hottest bpms (after dipoles) will be air-cooled with a fan system dangerous for vacuum leak Incentric vise 100 90 With a fan the temp drops 80 70 60 between 40 and 50 deg °C 50 Without Heatsink 40 With Heatsink 30 20 10 So in near future we are going to try up to 200 mA at 2.4 GeV minutes

G. Loda and R. Geometrante

Emanuel Karantzoulis

The multipole superconducting wiggler is a high flux and brightness source in the 10-25 keV range for the second Diffraction beamline (XRD-II). However since 2004 not used and next year has to serve 3 beam lines

64 mm
3.5 T
49
81 mm (H) x 10.7 mm (V
18.3 kW (2 GeV, 400 mA)

Its consumption as measured in 2004 of 0.6-0.7 l/h would be an additional difficulty with top up operations; however during tests in May 2011 it has been observed: 2 l/h without field and 7 l/h with magnetic field that anyway could not go above 0.9 T

Contract with BINP for major upgrades that guarantee 1-2 refills per year at 3.5 T and 330 mA at 2 GeV

Emanuel Karantzoulis

low alpha optics in Elettra

QD	Momentum	Emittance
strength	compaction	(nmrad)
1.8	-1.00E-04	
1.75	-5.00E-05	
1.715	-7.00E-07	
1.7145	3.00E-07	14
1.7125	3.00E-06	7.6
1.695	3.00E-05	7.2
1.6	2.00E-04	5.7
1.31	1.60E-03	14

Emanuel Karantzoulis

ESLS XIX , ISA, Aarhus, Nov. 23-24th 2011

and

- Top-up at both 2 and 2.4 GeV is the regular mode of operations
- Availability is improving as expected; we have to fight ageing
- Efforts to increase reproducibility and stabilization are increasingly successful
- □ The upgrade program continues (but lack of manpower)

Problems: The team is very much involved with FERMI@Elettra construction and commissioning, practically no other accel. physicist dedicated to Elettra available.

Emanuel Karantzoulis

elettra complex, optics and numbers

Beam height in experimental area [m]	1.3			
Number of achromats	12			
Length of Insertion Device (ID) straight sections [m]	6(4.8 utilizabile per ID)'s)		
Number of straight sections of use for ID's	11			
Number of bending magnet source points	12			
Beam revolution frequency [MHz]	1.157			
Number of circulating electron bunches	1 - 432			
Time between bunches [ns]	864 - 2			
Tunes: horizontal/vertical	14.3/8.2			
Natural emittance [nm-rad]		7	9.7	
Energy lost per turn without ID's [keV]		255.7	533	
Maximum energy lost per turn with ID's [keV] (all)		315	618.5	
Critical energy [keV]		3.2	5.5	
Bending magnet field [T]		1.2	1.45	
Geometrical emittance coupling %	<mark>≤ 1%</mark>			
Spurious dispersion (at the centre of IDs): horizontal (rms max/min) [6/2.			
Spurious dispersion (at the centre of IDs): vertical (rms max/min) [cm	2/0.5			
Operation mode	mainly multibunch - a	<mark>lso hyb</mark>	rid and	single
Injection energy range [GeV]	0.750 - 2.4			
max current [mA]		350	150	
Machine dominated by the Touschek effect				
Energy spread (rms) %		0.08	0.12	
Lifetime [hours]		8.5	26	
Bunch length (1 s) [mm] &		5.4	7	
Beam dimensions (1 s) &				
ID source point - horizontal/vertical [µm]		241/15	283/16	
Bending magnet source point - horizontal/vertical [µm]		139/28	197/30	
Beam divergence (1 s) &				
ID source point - horizontal/vertical [µrad]		29/6.	35/8.	
Bending magnet source point - horizontal/vertical [µrad]		263/9	370/13	
&: The values shown (taking into account the energy spread) are				
averages, obtained from a consideration of different angle and position				
alues of the spurious dispersion and can very by ±10%				

Magnet lattice	FODO with missing magnets
Maximum energy	2.5 GeV
Injection energy	100 MeV
RF frequency	499.654 MHz
Circumference	118.8 m
Revolution period	396 ns
Harmonic number	198
Equilibrium emittance (2.5 GeV)	
Normal Emittance Optic	226 nm.rad
Low Emittance Optic	166 nm.rad
r.m.s. energy spread (2.5 GeV)	7.18 10 ⁻⁴
Energy loss per turn (2.5 GeV)	388 keV
Damping times (h,v,l) (2.5 GeV)	5.1, 5.1, 2.6 ms
Betatron tunes Q _x , Q _y	5.39, 3.42
	6.8 , 2.85
Natural chromaticities ξ _x , ξ _y	-6.6, -4.7
	-11.1, -5.2
Momentum compaction factor	0.0443
	0.0308
Maximum β_x, β_y, D_x	10.8, 13.8, 1.621 m
	15.0, 17.2, 1.683 m
Peak effective RF voltage	0.84 MV (τ _q ~1 s)
(available 1.1MV)	0.73 MV (τ _q ~1 s)
	· · · · · · · · · · · · · · · · · · ·

Emanuel Karantzoulis

Decay mode, 2 GeV (340mA) and 2.4 GeV (140) – SRFEL at 1 GeV.

• The only source operating at 2 different energies

Emanuel Karantzoulis

ESLS XIX , ISA, Aarhus, Nov. 23-24th 2011

FERM

aelettra