

**EUROPEAN SPALLATION** SOURCE

#### Beam requirement for target design

ESS Target station Group



SPALLATION

# Outline

- Main parameters
- Design of the target
- Beam profile influence



EUROPEAN SPALLATION SOURCE

# **ROTHETA** main parameters

| Parameter                         | Units               | Value     |
|-----------------------------------|---------------------|-----------|
| Beam Energy                       | GeV                 | 2.5       |
| Beam Profile                      | -                   | Parabolic |
| Beam width                        | cm                  | 14        |
| Beam height                       | cm                  | 5         |
| Peak current density              | µA.cm⁻²             | 64        |
| Peak power density ("stationary") | kW.cm <sup>-3</sup> | 4.8       |
| Peak power density (corrected)    | W.cm <sup>-3</sup>  | 154 🥖     |
| Average current                   | mA                  | 2         |
| Average beam power                | MW                  | 5         |
| Beam repetition rate              | Hz                  | 14        |
| Pulse length                      | ms                  | 2.86      |
| Wheel outer diameter              | m                   | 2.5       |
| Rotation speed                    | RPM                 | ~25       |
| Number of sectors                 | -                   | 33        |
| Radiation damage lifetime         | dpa/FPY             | ~2.4 – 3  |
| Target lifetime                   | Year                | ~5        |
|                                   |                     |           |



EUROPEAN SPALLATION SOURCE

# **Current baseline (v2)**

- Baseline flow pattern (U-channel)
  - Flow in tangential direction following a U
  - Cooling channel 2mm

#### Alternative flow pattern (S-Channel)

- Flow in tangential direction but describing a S
- Channel larger to conserve the  $\Delta P$







### CFD Analysis Tungsten temperature





Maximum temperature reduced from 800°C to 394°CCourtesy to Y. Chen (KIT)Pressure drop is increased / further work to reduce the pressure loss

EUROPEAN SPALLATION SOURCE

#### CFD Analysis BEW temperature





Maximum temperature reduced from 255°C to 170°C

Courtesy to Y. Chen (KIT)

EUROPEAN SPALLATION SOURCE

# **Thermo-mechanical Analysis**

- Results
  - First approach (von Mises stress around 250-300MPa): improvement paths identified
  - Limits defined by standards
  - Tungsten stress: max 412 MPa (Rp<sub>0.2</sub>=462MPa), plates can be cut





### Conclusion

- Deposition in the BEW not visible (stress, temperature) → 2<sup>nd</sup> order importance
- However, very important to minimize its impact in order to increase the margin for other influence (cooling)



EUROPEAN SPALLATION SOURCE

- Parameter study to define tolerance envelope: only energy deposited in the BEW considered
- Beam envelope: 14cm x 5cm (worst case for study)
- 3 profiles studied:
  - Theoretical parabolic shape
  - Gaussian shape
  - Flat shape



FUROPEAN

OURCE

- Method:
  - Parabolic taken as the reference
  - Same energy deposited for all 3 shapes
  - Peak values calculated by Maxima
  - Import of calculated values into ANSYS →
    Stress analysis
  - Post processing according to RCC-MRx design standard



FUROPEAN

 $S_{Total} = S_P + S_{Th_1} + S_{Th_2} + S_{Th_3}$ 

$$\begin{split} \sigma_{P} &: stress \ due \ to \ pressure \\ \sigma_{Th1} &: stress \ due \ to \ \Delta T \ from \ time \\ averaged \ energy \ deposition \\ \sigma_{Th2} &: stress \ due \ to \ \Delta T \ from \\ instantaneous \ energy \ deposition \\ (considered \ negligible \ compared \ to \ \sigma_{Th1}) \\ \sigma_{Th3} &: stress \ due \ to \ heat \ transported \ by \\ the \ coolant (neglected \ in \ that \ analysis, \\ but \ very \ high \ contribution) \end{split}$$



Evolution of the Maximal Stress in the structure





EUROPEAN SPALLATION SOURCE

#### • Input parameters:

| Shape   | Input                        | min | max | Units  |  |
|---------|------------------------------|-----|-----|--------|--|
|         | Peak density (time averaged) | 2.4 | 64  | µA/cm² |  |
|         |                              |     | 160 |        |  |
| ΛII     | Peak density (instantaneous) | 60  | 0   | µA/cm² |  |
| All     | Tail (% of peak)             | 0   | 10  | %      |  |
|         | Vertical error               | -1  | 1   | cm     |  |
|         | Horizontal error             | -2  | 2   | cm     |  |
| Flat    | edge sharpness               | 0   | 2   | cm     |  |
| Gaussia | Vertical sigma               | 0.5 | 2   | cm     |  |
| n       | Horizontal sigma             | 1   | 6   | cm     |  |

EUROPEAN SPALLATION SOURCE

ESS | Beam expander workshop, Aahrus | 2012-03-26 | Pascal Sabbagh

 $\rightarrow$ 

- Output parameters:
  - Minimum safety margin for P damages for all 3 profiles
  - S damages have been investigated but not considered as an issue



EUROPEAN SPALLATION SOURCE

• Results: alignment error



SPALLATION SOURCE

• Results: Peak density



#### Strong influence!

Peak density should be reduced as much as possible. But 2mA must be kept (neutronic performances)



• Results: Tail



#### No influence!

No influence at constant power, but could have a large influence by inducing a disequilibrium.

• Results: Flat profile, edge sharpness



• Results: Gaussian profile, hor. & vert. sigma

No influence of horizontal sigma! Strong influence of vertical sigma!



- Conclusion
  - Main parameter: peak density
  - Requirements:
    - Low peak density
    - No tail (if possible)
  - $\rightarrow$  Inside this envelope, no requirement

Investigations continue for PBW and fatigue



EUROPEAN SPALLATION SOURCE

Thanks for your attention and to all contributors ...

