Conclusion

IFMIF High energy beam line design and beam expansion using non-linear multipole lenses and "step-like" magnet

N. Chauvin ¹ R. Duperrier ¹ P.A.P. Nghiem ¹ J. Y. Tang² D. Uriot ¹ Z.Yang²

¹Commissariat à l'Energie Atomique et aux Energies Alternatives, DSM/Irfu; F-91191 Gif-sur-Yvette, France.

²Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China

Monday 26th March 2012

N.	C	hauvin	et	al.

Outline

- 2 Beam dynamics simulations for LIPAc
- 3 Beam dynamics simulations for IFMIF
- Beam expansion in IFMIF HEBT with high-order multipoles
- Beam expansion with step-like field magnets (Zheng YANG's work)
- **6** Conclusions and perspectives

Outline

1 IFMIF accelerator overview

- 2 Beam dynamics simulations for LIPAc
- Beam dynamics simulations for IFMIF
- **1** Beam expansion in IFMIF HEBT with high-order multipoles
- Beam expansion with step-like field magnets (Zheng YANG's work)
- 6 Conclusions and perspectives

FMIF HEBT Multipoles

Conclusion

IFMIF principle

IFMIF HEBT Multipoles

IFMIF & LIPAc

IFMIF Accelerator: 2×5 MW

Linear IFMIF Prototype Accelerator (LIPAc): 1.125 MW

N.	ι.	hauvin	et al	

IFMIF accelerator characteristics & orders of magnitude

- Deuteron beam.
- Intensity: 125 mA, c.w. (5 MW @ 40 MeV).
- Energy: 40 MeV ($\beta = 0.166$).
- Energy: 9 Mev ($\beta = 0.094$) for LIPAc.
- Minimize the losses along the accelerator.
- Keep a good beam quality.
- Final beam spot on target 200×50 mm, with ± 5 % uniformity.

Outline

IFMIF accelerator overview

2 Beam dynamics simulations for LIPAc

- Beam dynamics simulations for IFMIF
- **1** Beam expansion in IFMIF HEBT with high-order multipoles
- Beam expansion with step-like field magnets (Zheng YANG's work)
- 6 Conclusions and perspectives

Codes used

Linac beam dynamics simulations

- GenLinWin: SC linac design.
- Toutatis: RFQ simulation.
- TraceWin:
 - multi-particles (10⁶ particles) simulations in space charge regime.
 - errors studies.
 - LIPAc start-to-end simulations.

Codes used

Linac beam dynamics simulations

- GenLinWin: SC linac design.
- Toutatis: RFQ simulation.
- TraceWin:
 - multi-particles (10⁶ particles) simulations in space charge regime.
 - errors studies.
 - LIPAc start-to-end simulations.

Source extraction and LEBT simulations

- AXCEL-INP: source extraction system simulation.
- SOLMAXP:
 - Self-consistant code to simulate beam transport with space charge compensation.
 - Simulation of the physical processes that occur in the LEBT (ionisation, secondary electrons, charge exchange).

N. Chauvin et al.

IFMIF HEBT

IFMIF HEBT Multipoles

The LIPAc injector

Main parameters

- D⁺ beam.
- Energy : 100 keV.
- Intensity : 140 mA.
- Final emittance : $\leq 0.25 \pi$ mm.mrad

IFMIF injector

- SILHI-like source.
- 4 electrodes extraction system.
- LEBT with 2 solenoids.
- Kr injection in the LEBT for space charge compensation.

Total lenght: 2.05 m

nauvin	er.	a	
 		•••••	

Conclusion

LIPAc injector beam dynamics results

LEBT output: $\epsilon_{\text{RMS}} = 0.16 \ \pi \ \text{mm.mrad}$ **RFQ transmission:** 96 % (5 % mismatch)

N. Chauvin et al.

LIPAc RFQ (M. Comunian, INFN Legnaro)

Some RFQ parameters

- Frequency: 176 MHz.
- Input energy: 100 keV.
- Output energy: 5 MeV.
- Total length: 9.814 m.

- Number of cells: 486.
- Maximum modulation: 1.8.
- Minimum aperture: 3.47 cm.
- Maximum field: 24.7 MV/m (1.76 kp).

FMIF HEBT Multipoles

RFQ beam dynamics results (M. Comunian, INFN Legnaro)

LIPAc Medium Energy Beam Transport line

MEBT purposes

- Transport the beam from the RFQ to the SC linac.
- Adapt the beam for the linac (longitudinally and transversally).
- Beam scrapping.

MEBT elements

- 5 quadrupoles.
- 2 bunchers.
- 4 BPMs.
- 3 scrappers.

Total length: 2.18 m

N. Chauvin et al.

LIPAc superconducting accelerating section

Specifications

- Acceleration from 5 MeV to 9 MeV.
- Beam intensity : 125 mA.
- Minimize the beam losses (< 1 W/m).

SC section

- 1 cryomodule.
- 8 periods.
- Trans. focusing: 1 solenoid/period.
- Acceleration: 1 HWR cavitiy/period $(\beta = 0.094)$.

Conclusion

LIPAc MEBT and SC section BD results

Beam Density – X plane

LIPAc MEBT and SC section BD results

Beam Density - Y plane

LIPAc High Energy Beam Transport line (designed by C. Olivier, CIEMAT Madrid)

HEBT purposes

- Beam diagnostics ("D plate") for LIPAc characterisation.
- Beam transport to the beam dump.
- Beam expansion to the beam dump (\leq 300 W/cm²).

Conclusion

LIPAc HEBT beam dynamics results

R beam density

LIPAc HEBT beam dynamics results

Beam distribution on the beam dump

Conclusion

LIPAc start-to-end dynamics results

R beam density

Outline

- IFMIF accelerator overview
- 2 Beam dynamics simulations for LIPAc
- **3** Beam dynamics simulations for IFMIF
- Beam expansion in IFMIF HEBT with high-order multipoles
- Beam expansion with step-like field magnets (Zheng YANG's work)
- 6 Conclusions and perspectives

IFMIF superconducting accelerating section

Specifications

- Acceleration from 5 MeV to 40 MeV.
- Beam intensity : 125 mA.
- Minimize the beam losses (< 1 W/m).

SC linac parameters

- 4 cryomodules.
- Transverse focusing: solenoids.
- 2 types of HWR cavities (β = 0.094 et β = 0.166)

IFMIF superconducting linac

Cryomodules	1	2	3 & 4
Cavity β	0.094	0.094	0.166
Cavity Length (mm)	180	180	280
Beam Aperture (mm)	40	40	48
Nb cavity/period	1	2	3
Nb cavity/cryostat	1 × 8	2×5	3×4
Cryostat Length (m)	4.64	4.30	6.03
Output Energy (MeV)	9	14.5	26/40

Beam dynamics optimisations

- Beam in the MW range and losses < 1 W/m ⇒ simulations with at least 10⁶ particles.
- Optimisations ⇒ losses minimization ("halo matching" rather than "RMS matching").

tep-like magnets

Conclusion

IFMIF SC-linac beam dynamics results

Beam density with "RMS matching"

	0			
N.	(. I	hauvin	et al	ł

tep-like magnets

Conclusion

IFMIF SC-linac beam dynamics results

Beam density with "halo matching"

Conclusion

IFMIF SC-linac beam dynamics results

Final Transverse emittance: 0.45 π mm.mrad.

Conclusion

IFMIF SC-linac beam dynamics results

Beam distribution after the IFMIF SC-linac.

N. Chauvin et al.

Outline

- IFMIF accelerator overview
- 2 Beam dynamics simulations for LIPAc
- Beam dynamics simulations for IFMIF

Beam expansion in IFMIF HEBT with high-order multipoles

- Beam expansion with step-like field magnets (Zheng YANG's work)
- 6 Conclusions and perspectives

IFMIF HEBT

Requirements

- Transport the 125 mA 40 MeV beam from the linac to the Li target.
- Beam footprint: rectangular with dimensions of 200×50 mm.
- Beam homogenity: 5% (to be reconsidered).
- Minimizing beam losses in the HEBT.
- Bending angle to protect the accelerator from the back streamed neutrons.

Simulations

- Multi-particles simulations are necessary.
- Recent development of a new diagnostic for TraceWin:

MY_DIAG(Beam_Homogeneity) n Target_Value Dimension_X Dimension_Y

Relative_Weight_Dimension/homogenity

N. Chauvin et al.

IFMIF HEBT

IFMIF HEBT

Design based on non-linear multipoles[Duperrier et al., 2004].

Non-linear Multipole field maps

0.15 0.1 0.2 0.05 0.1 B_x(T) $B_x(T)$ -0.05 -0.1 -0.1-0.2-0.15 -0 -0.02 0.02 0.04 -0.04 -0.02 0.02 -0.040 0 0.04 x (mm) x (mm)

1D Field Maps

Duodecapoles - 50 mm radius

Octupoles - 50 & 80 mm radius

N. Chauvin et al.

IFMIF HEBT

Non-linear Multipole field maps

2D Field Maps

Duodecapoles - 50 mm radius

Octupoles - 50 & 80 mm radius

	0			
N.	C	hauvin	et al.	

Beam Envelope (3σ) in IFMIF HEBT

Beam Density in IFMIF HEBT

Beam Density – X plane

Beam Density in IFMIF HEBT

Beam Density - Y plane

N	C	hauvin et al	

Power lost in the IFMIF HEBT

Total power lost: 2.276 kW - Losses on scrappers

Beam Distribution on target

Log. scale

N 1	0			
IN.	C.	nauvin	et a	ι.
		nauvini	cı a	4

Beam Distribution on target

Log. scale

Linear scale

Beam Distribution on target

Log. scale

Linear scale

Errors study

Errors applied (orders of magnitude)

• Static errors:

- Magnetic elements Misalignment [x,y] : ±0.1 mm.
- Magnetic elements Tilt $[\varphi_x, \varphi_y]$: ± 0.5 mrad
- Magnetic elements Tilt $[\varphi_z]$: ±8.7 mrad
- Magnetic elements Gradient: ±0.25 %
- BPMs Measurement Accuracy: ±0.1 mm
- Dynamic errors: $\approx 10\%$ of the static errors.
- Monte-Carlo simulation method: 10⁶ particles through 200 HEBTs.

Correction scheme

- 12 steerers and 12 BPMs in the beam line (working by pairs).
- Orbit correction.
- No re-tuning of the magnetic elements.

Beam Density - X plane - WITHOUT error

	\sim		
N.	C	hauvin	et al.

Cumulated Beam (200 runs) Density - X plane - WITH errors

Beam Density – Y plane – WITHOUT error

N	hauvin et al	

Cumulated (200 runs) Beam Density - Y plane - WITH errors

	\sim			
N. 1	L	hauvin	et al.	

Conclusion

IFMIF HEBT: Errors study results

Cumulated beam distribution (200 runs) on target Log. scale

Cumulated beam distribution (200 runs) on target Linear scale

0.9 0.8 0.7 v (mrad) 0.5 04 0.2 0.1.60 150 -150-100-50 50 100 x (mm)

Cumulated beam distribution (200 runs) on target Log. scale

Cumulated beam distribution (200 runs) on target Linear scale

IFMIF HEBT with non-linear multipoles: Pros and Cons

Pros

- Well-known solution.
- Flexibility of the beam line (tuning).

Cons

- The beam line tuning is challenging.
- Small radius of the non-linear elements.
- Beam scrapping is needed.

IFMIF HEBT with non-linear multipoles: to be studied

- More optimizations for the presented HEBT design are needed.
- A new design with a shorter/simpler HEBT will be proposed:

Outline

- IFMIF accelerator overview
- 2 Beam dynamics simulations for LIPAc
- Beam dynamics simulations for IFMIF
- Beam expansion in IFMIF HEBT with high-order multipoles
- Beam expansion with step-like field magnets (Zheng YANG's work)
- 6 Conclusions and perspectives

IFMIF overview

IFMIF HEBT with SFM magnets (Zheng YANG) Design based on Step-Like Field non-linear Magnets [Tang et al., 2004].

E

J.Y. Tang, H. H. Li, S.Z. An, and R. Maier (2004).

Distribution transformation by using step-like nonlinear magnets.

Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 532(3):538 - 547.

IFMIF HEBT design with SFM magnets (Z. YANG)

IFMIF HEBT design with SFM magnets (Z. YANG)

Step-Like Field magnet field map (Z. YANG)

Beam Envelope (3σ) in IFMIF HEBT (Z. YANG)

Conclusion

Beam Density in IFMIF HEBT (Z. YANG)

Beam Density – X plane

Beam Density in IFMIF HEBT (Z. YANG)

Beam Density – Y plane

Beam Distribution on target (Z. YANG)

Log. scale

Linear scale

Beam Distribution on target (Z. YANG)

Log. scale

Linear scale

Beam Density - X plane - WITHOUT error

N. Chauvin et al.

Cumulated (200 runs) Beam Density - X plane - WITH errors

	\sim			
N.	ι.	hauvin	et	al.

Beam Density - Y plane - WITHOUT error

N. Chauvin et al.

Cumulated (200 runs) Beam Density - Y plane - WITH errors

	\sim			
		n 2111/110		<u> </u>
IN.	<u> </u>	nauviii	εL	а.

FMIF HEBT Multipoles

Conclusion

IFMIF HEBT with SFM: Errors study results (Z. YANG)

Cumulated beam distribution (200 runs) on target Log. scale

Cumulated beam distribution (200 runs) on target Linear scale

Cumulated beam distribution (200 runs) on target Log. scale

Cumulated beam distribution (200 runs) on target Linear scale

IFMIF HEBT with Step-Like Field Magnets : Pros and Cons

Pros

- "Easier" beam line tuning.
- Large beam pipe aperture (low field).
- Steps can be adapted to the beam halo.
- STM are easy to manufacture.

Cons

- Slope (b) and step position (X₀) are fixed.
- Non-homogeneous zone seems to be in the center of the footprint.

N. Chauvin et al.

IFMIF HEBT

Outline

- IFMIF accelerator overview
- 2 Beam dynamics simulations for LIPAc
- Beam dynamics simulations for IFMIF
- **O Beam expansion in IFMIF HEBT with high-order multipoles**
- Beam expansion with step-like field magnets (Zheng YANG's work)
- **6** Conclusions and perspectives

Conclusions and Perspectives

Conclusions

- Two methods have been tested to expand the beam on the IFMIF liquid Lithium target.
- The step-like field magnets solutions looks very promising.
- A diagnostic has been implemented for TraceWin to optimize the beam line parameters.

Conclusions and Perspectives

Conclusions

- Two methods have been tested to expand the beam on the IFMIF liquid Lithium target.
- The step-like field magnets solutions looks very promising.
- A diagnostic has been implemented for TraceWin to optimize the beam line parameters.

Perspectives

- More optimizations have to be performed.
- Design of shorter and simpler beam HEBTs.
- HEBT tuning feasibility with real beam diagnostics.
- Develop beam diagnostics suitable for high radiation environment.