Introduction to ESS

Workshop on Non-Linear Beam Expander Systems in High-Power Accelerator Facilities

Århus, 26 March 2012

Håkan Danared ESS AD Beam Physics Group Leader

EUROPEAN SPALLATION SOURCE

ESS, MAX IV and Medicon Village

Multi-Science with Neutrons

Materials science Energy Technology

Bio-technology Hardware for IT

Nano science Engineering science

- Neutrons can provide unique and information on almost all materials.
- Information on both structure and dynamics simulaneously. "Where are the atoms and what are they doing?"
- 5000 users in Europe today Access based on peer review.
- Science with neutrons is limited by the intensity of today's sources

Neutrons See the Nuclei...

High Time-Average and Peak Flux

International Collaboration

Sweden, Denmark and Norway covers 50% of cost

The remaining ESS members states together with EIB covers the rest

17 Partners today

Based on European R&D

Ion source (Catania)

Radio-frequency quadrupole (Saclay)

Drift-tube linac (Legnaro)

SC single-spoke resonator (Orsay)

SC elliptical 5-cell cavity (Saclay)

High-Energy Beam Transport (Århus)

Construction Cost Estimates

Personnel:

Investment:

High-Level Linac Parameters

Linac Layout

	Length (m)	Input Energy (MeV)	Frequency (MHz)	Opt./Geom. Beta	No. of Modules	Temp. (K)
RFQ	5	0.075	352.2		1	≈ 300
DTL	19	3	352.2		3	≈ 300
Spokes	75	50	352.2	0.50	14 (2c)	≈ 2
Low Beta	117	191	704.4	0.70	16 (4c)	≈ 2
High Beta	200	653	704.4	0.92	15 (8c)	≈ 2
HEBT/Upgrade	163	2500				

Numbers are for Baseline 2011 "hybrid" version of SC linac. It is now superseeded by a design with segmented cryomodules, 80 MeV DTL, and other modifications.

Linac Hardware

IPHI RFQ

EURISOL triple-spoke cavity

SNS klystron gallery

Linac4 DTL

Beam Physics

- Lattice and optics exist for all sections of the linac, although not in final form.
- End-to-end simulations have been performed together with rudimentary error studies.
- A major challenge is to propagate a 5 MW beam without losing more than 1 W/m
- ...avoiding that the remaining >4.9995 MW drill a hole through the target!

End

Time Structure

HEBT, Warm Magnets

