

Bridging the molecular divide between molecular clouds and biology, a spectroscopist's view of detectability

John Pearson JPL

What we know and would like to know

• More than 130 uniquely identified molecules

- Most identified from rotational spectra
- More complex molecules most abundant in warm (or hot) environments
 - Star (and planet) formation regions
- Grains play a significant role
 - Chemical production of complex molecules
 - Freeze out of gas phase when cold enough
 - Evaporate from grain mantels when warm enough
- Complex is 6+ atoms
- Complex molecules in biology are thousands of atoms
 - Three orders of magnitude in complexity divide biology and astrophysics
- How complex can interstellar molecules be?
 - What role if any did ISM chemistry play in biology?
- What might we be able to detect?

Molecular Physics

• Einstein A Coefficient

$$A_{m\leftarrow n} = \frac{64\pi^4 v_{mn}^3}{3hc^3} S_{mn} \mu^2$$

Partition Functions

$$Q = Q_{el}Q_{vib}Q_{rot}Q_{spin}$$

$$Q_{rot} \cong \left(\frac{5.34 \times 10^6}{\sigma}\right) \left(\frac{T^3}{ABC}\right)^{1/2}$$

$$Q_{vib} = \left(\sum_{v_1} e^{-v_1h\omega_1/kT}\right) \left(\sum_{v_2} e^{-v_2h\omega_2/kT}\right) \left(\sum_{v_3} e^{-v_3h\omega_3/kT}\right) \dots$$

Implications for Detection

- A coefficients favorable for detection
 - Higher frequency transitions v^3 (Bad for big molecules)
 - Big dipole moments μ^2 (possible even probable)
- Partition function favorable for detection
 - Low temperature $T^{3/2}$ (possible)
 - Large rotational constants (Bad for big molecules)
 - High lying vibration states (Bad for big molecules)
- Big molecules loose on 3 of 5
 - Temperature requires some further exploration

What We Know

		dipole	MP	BP	А	В	С
CH3CN	methyl cyanide	3.9	-45.7C	81.6C	158099	9199	9199
CH3NC	methyl isocyanide	3.9	-45C	~80C	157151	10053	10053
CH3CH2CN	ethyl cyanide	4	-87C	97C	27663	4714	4235
CH3OH	methy alcohol	1.7	-93.9C	65C	127484	24679	23740
CH3CH2OH	ethyl alcohol	1.5	-117.3C	78.5C	34891	9350	8135
CH3CHO	Acetaldehyde	2.7	-121C	20.8C	56609	10162	9100
CH2CHCHO	Propenal	3.1	-86.9C	52.5C	47353	4659	4243
CH3CH2CHO	Propanal	2.5	-81C	48.8C	16669	5893	4599
CH2(OH)CHO	Glycolaldehyde	2.4	97C	hot	18446	6525	4969
CH3OCHO	Methyl formate	1.8	-100C	32C	19986	6915	5304
HCOOCH3	Acetic Acid	1.7	16.6C	117.9C	11324	9494	5326
(CH3)2CO	acetone	2.9	-95.4C	56.2C	10165	8515	4910
(CH3)2O	dimethyl either	1.3	-138.5C	-25C	38788	10057	8887
CH3CH2OCH3	ethyl methyl either	1.2	~-80C	10C	27992	4159	3891
(CH2OH)2	ethylene glycol	2.3	-12C	196.3C	15361	5588	4614
CH3NH2	methyl amine	1.3	-93.5C	-6.3C	105976	22608	21723
CH3CONH2	acetamid	??	82.3C	221.2C	13291	9326	5175
CH3SH	methyl mercaptan	1.5	-123C	6.2C	102691	12947	12386

MP=Melting Point BP=Boiling Point (1atm)

Acetamid and Glycolaldehyde? are high others are similar

Temperature Effects

• Lower temperature results in smaller partition function

- Absorption probably easier for detection
- But, low frequency is normally required

• Vapor pressure is important

- Water is known to freeze below 100K
- Few saturated molecules in cold regions suggestive of the same physics
- More elaborate physics is required to get sticky molecules off grains
 - Gas phase formation
 - Mechanical removal (e.g. shock)
- Confirming detection of low vapor pressure molecule requires great care!

The Unhappy State of Affairs

- Big molecules have big partition functions
 - Often have multiple conformers (factors of 2-4 in Q)
 - Often have multiple low lying vibrational states (factors of 2 in Q)
 - Always have small rotational constants (factors of 5-1000 in Q)

• Big molecules also generally have higher melting points

- Harder to get and keep off grains
- There are some interesting exceptions
 - Big dipoles often mean higher melting points!

How to Manipulate Physics

Detection of Big molecules in absorption

- Allows for partition function to be largely collapsed
 - Does not work if freeze out onto grains is effective
 - Does not solve low frequency weak line strength

• Look at transitions sampling low energy levels at high Frequency

- Ro-Vibrational, Ro-Torsional, Ro-electronic
- Emission possible if
 - Q is small enough
 - Dipole is big enough
- Absorption is better for detection
 - Does not work if freeze out onto grains is effective
 - Dipole moment is no longer the rotational dipole moment

Dipoles in Vibrational Transitions

• The dipole in a Ro-vibrational transition is a dipole derivative

 $\mu = \mu_e + \left(\frac{\partial \mu}{\partial \vec{R}}\right)$

- Typically <10% of the rotational dipole

• The dipole in a Ro-Torsional transition is the rotational dipole

$$\mu = \mu_{\parallel} + \sum_{n} \mu_{\perp} \cos^{n} \gamma + \sum_{n} - \mu_{\perp} \sin^{n} \gamma$$
$$\left\langle \mu \right\rangle_{RT} = \mu_{\perp} \left\langle \psi_{l} \left| \cos^{n} \gamma \right| \psi_{m} \right\rangle - \mu_{\perp} \left\langle \psi_{l} \left| \sin^{n} \gamma \right| \psi_{m} \right\rangle$$

- Overlap integrals can be nearly unity (Inversion of NH₃)
- Perpendicular part of dipole can be major moment (~1.4 Debye in CH₂DOH)

Strong dipoles

• Motion (larger the amplitude the better) of the rotational dipole

- Inversion (change of sign)
- Quasi linearity
- Internal rotation (large dipole component off of internal rotation axis)
- Puckering of ring (Quasi Planarity)

Electronic Transitions

- Generally a significant fraction (~¹/₂) rotational dipole

What to look for

- Molecules with large amplitude motion of highly polar group
 - Internal Rotation
 - Inversion
 - Conformational transitions
- Molecules with large dipole moments
- Molecules with low melting and boiling points
- Preferably in absorption to reduce partition functions

Truth in Advertising

• Nearly nothing is known about such species!

- Detailed physics is incomplete for asymmetric-top asymmetric-frame internal motions
- Almost no laboratory data exists
 - Some low resolution THz
 - Some Raman data (also low resolution)
- Plenty of confusing lines exist
 - ¹³C substituted large molecule are almost all unknown
 - D substitute (especially in CH₃ rotors) are almost all unknown
 - Even Methanol at higher excitation is insufficient for ALMA and Herschel

How to confirm detection

- Measure and Cataloged all the known species
 - Must include isotopomers (probably doubly substituted)
 - Must include all the vibrational states observable
 - Vibrational energy required can be calculated from ground state signal-to-noise and excitation temperature
 - Transitions frequencies should be 10 time more accurate than observation resolution
- Potential detection molecules must be known
 - Transitions should be 10 times more accurate than observation
 - Extrapolated transitions should never be used
 - Astronomical sources that have well understood abundances should be used
 - At a minimum it gives a confusion limit
- A few lines are not enough
 - Whole series of clean detection are required

- Herschel and ALMA will detect thousands of U-lines
 - Most will be transitions of well known molecules
- Laboratory work and Quality catalogs will make or break the identification of exciting large molecules
- In US only NASA has a laboratory astrophysics program
 - About 10 awards a year (typically \$100K/year for 3 years) across all wavelengths
 - NASA is not funding any atomic/molecular catalogs
- Majority of needed laboratory work is not interesting to chemical physics
 - Funding is nearly impossible through normal channels (e.g. NSF chem)
 - Astronomical technology now exceeds previous laboratory spectroscopy ranges
- A dedicated laboratory/catalog program is absolutely necessary
 - White paper for US support is available

Ground state dimethyl either Q branch near 845 GHz Grey is lab spectra Black is JPL catalog.