Probing the Inner 200 AU of Low-Mass Protostars ...waiting for ALMA

Jes Jørgensen Harvard-Smithsonian Center for Astrophysics

Fredrik Schöier, Tyler Bourke, Philip Myers, Ewine van Dishoeck, David Wilner, Fred Lahuis, Neal Evans ...and the rest of the *PROSAC* and *c2d* teams

This talk

- What are the physical and chemical structure of low-mass protostars on few hundred AU scales?
- Constraints from high-angular resolution submm (SMA) and mid-IR (Spitzer) observations.
- Establishing a framework for interpreting ALMA observations of low-mass protostars.

Jes Jørgensen (CfA), Fuglsøcentret, May 9, 2006

Class 0 protostars...

- Thought to represent the first ~10⁴ yrs after collapse
- Emit more than 0.5% of their luminosity at submm wavelengths
- Initial core angular momentum → centrifugal radius, R_c, material piles up in disk: R_c ~ t³ in traditionally inside-out collapsing core with solid body rotation (*Terebey, Shu & Cassen, 1984*) - or R_c ~ t in magnetized cores (*Basu 1997*)
- Heating from central protostar; possibly increases temperature to 100+ K in inner (*r* < 20-100 AU) envelope → distinct chemistry...?

from JWST science case

Framework

Envelope large scale physical structure (temperature, density)

High resolution (sub)mm data

Confirm/disprove envelope model, *R*_{in}

Mid-infrared observations

Disk: existence, SED, structure (physical, chemical)

Envelope structure...1

Data:

- SED, images
- Distance

Constrain:

• $p, n_0 \text{ (or } \tau_{100}), R_{out}$

Radiative transfer, calculate:Temperature profile

• Model images, SED

See Jørgensen et al. (2002), Schöier et al. (2002), Shirley et al. (2002)

Framework

Envelope large scale physical structure (temperature, density)

High resolution (sub)mm data

Confirm/disprove envelope model, *R*_{in}

Mid-infrared observations

Disk: existence, SED, structure (physical, chemical) Single-dish line observations

Chemical structure: "average" abundances

High resolution line observations

Radial variations in env. chemistry

Low-mass protostars

~ 20,000 AU (100")

~ 200 AU (1")

- Densities ranging from 10⁴ cm⁻³ to 10⁷-10⁸ cm⁻³ (H₂)
- Temperatures ranging from ~10 K to a few hundred K.

Hot cores

Need:

- High excitation lines (probing high densities and temperatures).
- Molecules that are not too sensitive to the chemistry of the outer envelope.
- High angular resolution (beam dilution/mass weighting of lines/contribution from outflows).

The Submillimeter Array on Mauna Kea

- Eight 6 meter antennae.
- Receivers at 230 GHz, 345 GHz and 690 GHz.
- 2 GHz bandwidth with 10 GHz sideband separation.
- Located on the top of Mauna Kea (~ 50% of nights good for 345 GHz science; ~ 10% for 690 GHz).
- Angular resolution of 1.5-3" in compact configurations (best sensitivity to extended structures) to 0.5-1" in extended configurations.

Protostellar Submillimeter Array Campaign "PROSAC"

Jørgensen (PI) Bourke, Di Francesco, Lee, Myers, Ohashi, Schöier, Takakuwa, van Dishoeck, Wilner, Zhang

- Line + continuum survey (230/345 GHz) of a sample of 8 (+1) deeply embedded (Class 0) protostars
- 3 spectral setups per source: CO, CS, SO, HCO⁺, H₂CO, CH₃OH, SiO, ... transitions (and isotopes)

CSACE Proto

AGUINA JOSE

CI DI

- 20 tracks allocated (and observed) Nov. 2004 Jan. 2006.
- "Large scale" envelope structure from detailed line and continuum radiative transfer models (Jørgensen et al. 2002; 2004)
- Additional short spacing data from the JCMT

NGC1333-IRAS2A: 850 µm dust continuum

SCUBA 850 µm

SMA 850 µm

Jørgensen et al. 2005, ApJ, 632, 973

NGC1333-IRAS2A: 850 µm dust continuum

...the SMA resolves the warm dust in the inner envelope and the circumstellar disk. The disk is a substantial mass reservoir - dominating the column density of the inner (T > 100 K) envelope.

Jørgensen et al. 2005, ApJ, 632, 973

Envelope structure...1

Assume:

- Central source of heating
- Inner radius
- Density profile "type" (e.g., $n = n_0(r/r_0)^{-p}$)
- Dust properties

Data:

- SED, images
- Distance

Constrain:

• *p*,
$$n_0$$
 (or τ_{100}), R_{ou}

Radiative transfer, calculate:

- Temperature profile
 Model images SED
- Model images, SED

See Jørgensen et al. (2002), Schöier et al. (2002), Shirley et al. (2002)

The Spitzer Space Telescope

- Imaging at 3.6, 4.5, 5.6, 8.0 μm (IRAC); 24, 70, 160 μm (MIPS)
- Spectroscopy (IRS) at 5-37 μ m with $\Delta\lambda/\lambda \sim 60-600$

c2d legacy project (Evans et al.)

...400 hours to image nearby star forming clouds and cores and perform spectroscopy of embedded objects and stars with disks...

mid-IR obs. of low-mass protostars

For a very deeply embedded protostar, no mid-IR emission should be detected - even with the sensitivity of Spitzer

Envelope structure...2

• Do the envelopes extend all the way to the smallest scales?

Inside 600 AU the envelope has to be "cleared" of material: otherwise envelope severely optically thick at mid-IR wavelengths; no emission escapes from the central source(s).

For comparison the binary sep. (radius) is 400 AU (2.5").

Dashed line: Best fit model of Schöier et al.

We need data from not just (sub)mm obs. but additional constraints from, e.g., mid-IR (Spitzer) observations are important...

Spitzer: c2d/IKS

JUIYEIISEII EL al. 2000, Apj, 001, LTT

Two other low-mass hot core candidates...

Inner cavities of ~100 AU sizes present to let of "enough" mid-IR emission escape. This is not new: Known already to be a problem for less embedded Class I objects when explaining IRAS measurements (e.g., Adams et al. 1987, Myers et al. 1987)

A small summary...

	<i>r_i</i>	Small-scale structure (radius)	T(r _i)
IRAS16293-2422	600 AU	400 AU (binary sep.)	65-80 K
L1448-C	50-100 AU	< 100 AU (unresolved SMA disk)	110-85 K
NGC1333- IRAS2A	250 AU	150 AU (resolved SMA disk)	75 K

Nature is cruel: $r_{\text{cent.}} \sim M_{\text{star}} \sim L_{\text{acc.}}$ while $r_{100 \text{ K}} \sim L^{0.5}$

Organic molecules toward IRAS2A

Well, but we do know there is hot gas on small scales...!

Jørgensen et al. 2005, ApJ, 632, 973

Shocks are likely important

IRAS16293-2422A: high excitation transitions have their origin close to a shock (A1) rather than the lowmass protostar (Aa) (Chandler et al. 2005).

Green colors reflect emission from H_2 rotational transitions in the 4.5 µm band - probing shocked gas of 500-1000 K. Red is PAH emission in the 8 µm band.

Spitzer/IRAC from c2d (Jørgensen et al. 2006, in press.) and GTO team (Gutermuth et al. in prep.)

(45,000 AU)

NGC1333

NGC1333-IRAS4B

Green (image): H_2 emission from Spitzer Red/blue: CO 2-1; yellow/black: CH_3OH 7-6 from SMA obs. NGC1333-IRAS4B:

Contours:

CO 2-1 red- and blue shifted outflow emission

CH₃OH 7₋₁-6₋₁ C¹⁷O 3-2 (colored)

CH₃OH enhanced in shock at scales comparable to the single-dish beam. (see also Jørgensen et al. 2005, A&A, 437, 501)

Jørgensen et al./PROSAC team

NGC1333-IRAS4A do not show strong abundance enhancements in single-dish data likely reflecting different scales of outflow/shocks.

Compact CH_3OH emission (red-shifted) only seen toward fainter continuum source - where the most collimated outflow has its origin.

Red/blue: CO 2-1; yellow/black: CH₃OH 7-6 from SMA obs.

NGC1333-IRAS2A

The best candidate hot core from single-dish studies (Maret et al. 2005; Jørgensen et al. 2005) - but SED + high-res. submm data suggest cavity with max. temperature of 75 K.

Shows compact CH₃OH emission - but also that shocked H₂ is prominent close to the central protostar itself. Similar to IRAS16293-2422A... or related to accretion shock in the disk? (aka. L1157; *Velusamy et al. 2002*)

Green (image): H_2 emission from Spitzer Red/blue: CO 2-1; yellow/black: CH_3OH 7-6 from SMA obs.

So what are we learning... ...while we are waiting for ALMA?

- Single-dish studies of low-mass hot cores are inconclusive as regards the nature of the gas where complex organics reside (although... complex organic molecules and hot gas <u>are</u> present!)
- High angular resolution submm and mid-IR continuum observations penetrate the dusty envelopes of low-mass protostars: disks present on small scales - implying the breakdown of spherical models based on single-dish observations. Cavities are observed on those scales - why envelope material is unlikely to be (radiatively) heated above 80-100 K.
- Shocks are clearly important on all scales in protostellar environments. CH₃OH observations from the SMA - and broad band observations from Spitzer (sensitive to the H₂ emission at temperatures of 500-1000 K) are for example found to be correlated.

Single-dish studies (H₂CO/CH₃OH)

Need:

- High excitation lines (probing high densities and temperatures).
- Molecules that are not too sensitive to the chemistry of the outer envelope.
- High angular resolution (beam dilution/mass weighting of lines/contribution from outflows).

A small back of the PowerPoint slide calculation... Envelope density profile $n \propto r^{-p}$ with $p \sim 1.5 - 2.0$

$$\begin{split} N &= \int_{r_i}^{r_o} n(r) dr \propto \int_{r_i}^{r_o} r^{-p} dr \quad \text{[line of sight column density]} \\ &= \frac{1}{1-p} (r_o^{1-p} - r_i^{1-p}) \sim \boxed{r_i^{1-p}} \quad r_o \gg r_i \end{split}$$

$$\begin{split} M &= \int_{r_i}^{r_o} 4\pi r^2 n(r) \mu m_{\rm H} dr \propto \int_{r_i}^{r_o} r^{2-p} dr \text{ [mass]} \\ &= \frac{1}{3-p} (r_o^{3-p} - r_i^{3-p}) \sim \boxed{r_o^{3-p}} \quad r_o \gg r_i \end{split}$$

The line-of-sight column density (or related extinction) is "determined" by the envelope inner radius, whereas the mass (or beam avg. column) is "determined" by the outer radius.

2D?

Outflow cavity model can explain (mid-IR) SED for specific opening angles,...

...but high angular resolution millimeter interferometer data resolves inner cavity and proves its existence.

We need data from not just mid-IR obs. but additional constraints from, e.g., the high angular (sub)mm observations (SMA/CARMA) are important...

Jørgensen et al. 2005, ApJ, 631, L//

PROSAC

CSAC: Proton

UDU

TELLY LETELL

PROtostellar Submillimeter Array Campaign

Jørgensen (PI) Bourke, Di Francesco, Lee, Myers, Ohashi, Schöier, Takakuwa, van Dishoeck, Wilner, Zhang

