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This talk

———

* What are the physical and chemical struc
low-mass protostars on few hundred AU
scales?

 Constraints from high-angular resolution
submm (SMA) and mid-IR (Spitzer)
observations.

 Establishing a framework for interpreting ALMA
observations of low-mass protostars.

Jes Jargensen (CfA), Fuglsgcentret, May 9, 2006




Class 0 protostars...

Thought to represent the first ~10# yrs
after collapse

Emit more than 0.5% of their ' \ I y
luminosity at submm wavelengths fj,

l \ / -
Initial core angular mementum > : ;\T 3"$
centrifugal radius, R., material piles / l \
up in disk: R, ~ t2 in traditionally
inside-out collapsing core with solid
body rotation (Terebey, Shu & ; :
Cassen, 1984) - or R_~ t in -8 »
magnetized cores (Basu 1997)
Heating from central protostar;
possibly increases temperature to LBt SN e Sone
100+ K in inner (r < 20-100 AU)

envelope - distinct chemistry...?
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10%yrs; 10-10* AU; 10-300K 10%8 yrs; 1-1000AU; 100-3000K

10%7 yrs; 1-100AU; 100-3000K 107*yrs; 1-100AU; 200-3000K




Framework

Single-dish ———> Envelope large scale
submm/FIR dust physical structure
continuum emission  (temperature, density)

|

Confirm/disprove
envelope model, R,

Mid-infrared l

observations \

Disk: existence, SED,
structure (physical,
chemical)

High resolution
(sub)mm data



Envelope structure...2™
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e SED, images

e Distance .
- Temperature profile

- Model images, SED
® D, Ny (Or 7300)s Ryt

See Jgrgensen et al. (2002), Schdier et al. (2002), Shirley et al. (2002)




Framework

__ STGIESHISINT
Single-dish ——> Envelope large scale "CIISEVElIoNS
submm/FIR dust physical structure > l

continuum emission  (temperature, density)

Chemical structure:
l “average” abundances

Confirm/disprove l
envelope model, R;, High resolution

Mid-infrared line observations
observations ~~—__ / |
Radial variations

Disk: existence, SED, In env. chemistry
structure (physical,
chemical)

High resolution
(sub)mm data




~ 20,000 AU (100”) ~ 200 AU (17)

e Densities ranging from 10% cm= to 107-108% cm3 (H,)
e Temperatures ranging from ~10 K to a few hundred K.




Hot cores

Need:

- High excitation lines (probing high densities and
temperatures).

- Molecules that are not too sensitive to the chemistry of
the outer envelope.

- High angular resolution (beam dilution/mass weighting
of lines/contribution from outflows).




* Angular resolutlon ppf_wl.5-3” in }g:mompact configurations
(best sensitivity to extended structures) to 0.5-1” in
extended configurations.




Protostellar Submillimeter Array
Campaign “PROSAC”

Jargensen (PI)
Bourke, Di Francesco, Lee, Myers, Ohashi,
Schoier, Takakuwa, van Dishoeck, Wilner, Zhang

Line + continuum survey. (230/345 GHz) of'a sample. ofi 8/ (+1)
deeply embedded (Class 0) protostars

3 spectral setups per source: CO, CS, SO, HCO*, H,CO, CH;0H,
SIO, ... transitions (and isotopes)

20 tracks allocated (and observed) Nov. 2004 - Jan. 2006.

“Large scale” envelope structure from detailed line and continuum
radiative transfer models (Jgrgensen et al. 2002; 2004)

Additional short spacing data from the JCMT




NGC1333-IRAS2A: 850 pim cUSTCOntIREmmrr
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5000 AU

Only 20% of the single-dish flux

T T » recovered by the interferometer
20 0 -20 -40 -60 observations.

RA offset [”] RA Offset [”]
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Jargensen et al. 2005, ApJ, 632, 973
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Envelope (constrained through SCUBA
observations; Jgrgensen et al. (2002))
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Disk (resolved)
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...the SMA resolves the warm dust in the inner envelope and the
circumstellar disk. The disk is a substantial mass reservoir -
dominating the column density of the inner (T > 100 K) envelope.

Jargensen et al. 2005, ApJ, 632, 973
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Envelope structure...1®

I —

Central source of heating

Inner radius

Density profile “type” (e.d., n= ng(r/rg) =P)
Dust properties

SED, images
Distance

- Temperature profile
P, Ng (O 7300), Rout - Model images, SED

See Jgrgensen et al. (2002), Schdier et al. (2002), Shirley et al. (2002)




The Spitzer Space
Telescope

e Imaging at 3.6, 4.5, 5.6, 8.0 um (|RAC),,,22I’“70 160 urt (MIPS)
e Spectroscopy (IRS) at 5-37 pm with A% ~ 60-600

c2d legacy project

(Evans et al.)

...400 hours to image nearby star forming clouds and cores and
perform spectroscopy of embedded objects and stars with disks...




mid-IR obs. of low-mass pProtoStaks

VelLLO Class 0
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For a very deeply embedded protostar, no mid-IR emission
should be detected - even with the sensitivity of Spitzer




Envelope structure...2
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e Do the envelopes extend all'the way to the smallestscales?

[ RS LOEOEE etas Inside 600" AU the envelope
has'to be “cleared* el materal:
othenwise envelope severely:
optically thick at mid=IR
wavelengths; no emission
escapes from the central

source(s).

DEC offset ["]

|
)

For comparison the binary sep.
(radius) is 400 AU (2.5).

- Schoier et al. (2004)
PR T S T N T T R R N T RN TR

10 5 Dashed line: Best fit model of Schoier et al.

/IANANAAN

We need data from not just (sub)mm obs. but additional
constraints from, e.g., mid-IR (Spitzer) observations are

_ important...
Spltzer: CZd/IRD \J]UIUCIIDCII cLal. £LVvy, I‘\|J\J y VO, LI [
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L NGC1333-IRASZ2A . . L1448-mm
R = 9 AU (250 K) - ---
R, = 50 AU (110 K) ——

---- R = 23 AU (250 K)
R' = 250 AU (75 K)
" L a1l " L

100 1000

10000 100 1000 10000
A [um] A [um]

Inner cavities of ~100 AU sizes present to let of “enough” mid-IR
emission escape. This is not new: Known already to be a problem for
less embedded Class | objects when explaining IRAS measurements
(e.g., Adams et al. 1987, Myers et al. 1987)




A small summary...

Small-scale structire
(radius)

IRAS16293-2422 400 AU
(binary sep.)

L1448-C 50-100 AU | < 100 AU 110-85 K
(unresolved SMA disk)

NGC1333- 150 AU
IRAS2A (resolved SMA disk)

' - ~ ' ~ ] 0.5
Nature is cruel: r Mqiar ~ Lace While 1o ~ L

cent.




Organic molecules toward IRASZAT
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Well, but we do know there is hot gas on small scales...!

Jargensen et al. 2005, ApJ, 632, 973



Shocks are likely importine=——

Chandler et al., 2005, ApJ, 632, 371

IRAS16293-2422A.: high
HS @ excitation transitions have
their origin close to a shock
(Al) rather than the low-
HCN @ S4S/CH,0CHO blend mass protostar (Aa)
HDO (Chandler et al. 2005).
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NGC1333 . | Green colors reflect
= i emission from H, rotational
transitions in the 4.5 pym
band - probing shocked gas
of 500-1000 K. Red is PAH
emission in the 8 um band.

*

3' (45,000 AU)

i

Spitzer/IRAC from 62d (Jgrgensen et al. 2006, in press.) and GTO team (Gutermuth et al. in prep.)
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30" (7,500 AU)
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NGC1333-IRAS4B

(€%

IRAS4B
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Green (image): H, emission from Spitzer
Red/blue: CO 2-1; yellow/black: CH;OH 7-6 from SMA obs.




NGC1333-IRAS4B:
Contours:

CO 2-1 red- and blue
shifted outflow
emission

CH,OH 7 ;-6 ,
C1’0 3-2 (colored)

CH;OH enhanced in
shock at scales
comparable to the

single-dish beam.
(see also Jgrgensen et
al. 2005, A&A, 437, 501)
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Jargensen et al./PROSAC team




IRAS4A

O o |
NGC1333-IRAS4A do not show strong abundance enhancements in
single-dish data likely reflecting different scales of outflow/shocks.

Compact CH;OH emission (red-shifted) only seen toward fainter
continuum source - where the most collimated outflow has its origin.

Red/blue: CO 2-1; yellow/black: CHgOH 7-6 from SMA obs.




NGC1333-IRAS2A e

R —

The best cand -

from single-dish studies (Maret
et al. 2005, Jgrgensen.etal.
2005) - but SED + high-res.
submm data suggest cavity
with max. temperature of 75 K.

IRAS2A

Shows compact CH,0OH
emission - but also that

shocked H, is prominent close
to the central protostar itself.
Similar to IRAS16293-2422A...
or related to accretion shock in
2%(500 AU) the disk? (aka. L1157;
i Velusamy et al. 2002)

Green (image): H, emission from Spitzer
Red/blue: CO 2-1; yellow/black: CH;OH 7-6 from SMA obs.
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So what are we learning...
..while we are waiting for ALMA?==

< Single-dish studies of low-mass hot cores, are inconclisiversasiiegards ine
nature of the gas where complex organics. reside (althetgh:.."complex
organic molecules and hot gas are present!)

< High angular resolution submm and mid-1R continuums elbservations
penetrate the dusty envelopes of low-mass protestars: disks present on
small scales - implying the breakdown ofi spherical models based on
single-dish observations. Cavities are observed on those scales - why
envelope material is unlikely to be (radiatively) heated above 80-100 K.

< Shocks are clearly important on all scales in protostellar environments.
CH,;OH observations from the SMA - and broad band observations from
Spitzer (sensitive to the H, emission at temperatures of 500-1000 K) are
for example found to be correlated.

4 A detailed framework is in place/being continuously developed to
perform the full dust and line radiative transfer necessary to interpret
coming observations of low-mass protostars, e.g., from ALMA.




Single-dish studies (H,CO/CHEOE

Need:

- High excitation lines (probing high densities and
temperatures).

- Molecules that are not too sensitive to the chemistry of
the outer envelope.

- High angular resolution (beam dilution/mass weighting
of lines/contribution from outflows).




A small back of the PowerPoint slide calculation...

Envelope density profile n <= with p ~ 1.5 — 2.0

N = / r)dr o / / r~Pdy  [line of sight column density]
Sy A 5
s} (Ti_p_"-"’i p)’”’ri - To 2T

P
To To
M = / Arr?n(r) pmudr o r2"Pdy [mass]
T T

1 3 Ly p I3
24 (Tﬁ—p e Tfi—p) e Td‘.—p T 2
3 s p (9] T (&

The line-of-sight column density (or related extinction) is
“determined” by the envelope inner radius, whereas the mass
(or beam avg. column) is “determined” by the outer radius.




| Outflow cavity model

IRAS16293 @ 1.4 mm | can explain (r_n,'d_lR) :
(envelope only) | SED for SpECIfIC opening
Spherical (2002) i
- - ==2D w./ cavity angleS,---
s Spherical (2004)

- Spherical (2005) i ...but high angular
OVRO mm observations resolution millimeter
(Schoier, JKJ et al. 2004) interferometer data

i resolves inner cavity
and proves its
existence.
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We need data from not just mid-IR obs. but additional
constraints from, e.g., the high angular (sub)mm
observations (SMA/CARMA) are important...




PROSAC

tostellar ubmillimeter ' rray ©ampaign

Jargensen (PI)
Bourke, Di Francesco, Lee, Myers, Ohashi,
Schoier, Takakuwa, van Dishoeck, Wilner, Zhang
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3.86 degree? (overlap) mapped by c2d with Spitzer/IRAC (3.6, 4.5, 5.8 and um))
Jargensen et al. 2006, in press.




