

Testing grain-surface chemistry in massive hot-core regions

Suzanne Bisschop Jes Jørgensen Ewine van Dishoeck 09-05-06

Introduction I

High mass star forming regions rich in organics!

Introduction II

- 2 proposed formation mechanisms:
 - Grain-surface chemistry
 - High temperature gas phase chemistry

Based on Tielens and Charnley 1997

Observations JCMT & IRAM

- 7 high mass YSOs
- Source selection criteria:
 - Lines < 5 km s⁻¹
 - -D < 5 kpc
 - $-T_a > 1 \text{ K} 338 \text{ GHz} 7_K 6_K$ CH₃OH branch
- Luminosities 10^4 - $10^6 L_{\odot}$
- Solid state data available

•Rotation temperatures: hot or cold? •Inventory abundances grain-surface species ↓ Link molecules chemically

Results: spectra

- Rotation diagram
 - $-T_{\rm rot}$ & N
- Dust radiative transfer models based on 850 μ m SCUBA data + L
 - $-R_{T=100 \text{ K}} \rightarrow \text{beam-dilution: } N(X)/bf$
 - $-N(H_2)_{T>100 \text{ K}} \rightarrow \text{abundances: } N_{bf}(X)/N(H_2)$
- Correlation abundances

Rotation diagrams CH₂CO

Assumptions: emission coming from a region with a single temperature and emission optically thin

Rotation diagrams: CH₃OH

Rotational temperatures

Beam-dilution and $N(H_2)_{T>}$

100 K

- $R_{T=100 \text{ K}}$:10³-10⁴ AU
- $N_{T>100 \text{ K}}$: 10²²-10²³ cm⁻²
- Bf: 0.02-0.1

Aim: N(X)/bf: source averaged column densities $N_{bf}(X)/N(H_2)_{T>100 \text{ K}}$: abundances

Column density trends (hot gas)

- Similar column density variations (1-2 orders of mag.) for
 - H₂CO, CH₃OH, C₂H₅OH, CH₃OCH₃, and CH₃OCHO
 - HNCO, NH₂CHO
- Note independent of beam-dilution correction!

Correlation abundances with respect to CH₃OH

- Abundances of molecules compared in 100 K gas
 - O-bearing species correlate
 - N-bearing species correlate (HNCO & NH₂CHO)

Branching ratios

	Ratio	σ
H ₂ CO/CH ₃ OH	0.21	0.05
C ₂ H ₅ OH/CH ₃ OH	0.025	0.013
CH ₃ OCHO/CH ₃ OH	0.098	0.032
CH ₃ OCH ₃ /CH ₃ OH	0.31	0.20
NH ₂ CHO/HNCO	0.27	0.14

• Correlating species have constant branching ratios

HNCO – NH₂CHO

Implications

• Hydrogenation to C₂H₅OH very efficient?/ Route through CH₃OH?

- Formation CH_2CO and CH_3OH ?
- HCOOH relation unclear
- HNCO and NH_2CHO related

Conclusion

- Some molecules always hot, others always cold
- Significant column density (abundance) variations in hot gas
- Strong correlations for O-bearing and Nbearing species, but not with each other!

Future work:

- Spatially resolved observations
- Laboratory experiments