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. The Nature of the Problem and the Challenges along the
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V. Experimental and Numerical Results
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A MOLECULAR LINE SURVEY OF ORION KL IN THE 350 MICRON BAND

C. Comito, P. Schilke, T. G. Phillips, D. C. Lis, F. Motte, and D. Mehringer; Ap. J. S.S. 156, 127 (2005).
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1. Identify ‘U’ lines
2. Fit for individually identifiable ‘U’ lines
3. Will fits to ‘complete’ spectral libraries eliminate the background clutter?
4. Are there individually hidden, but collectively observable ‘flowers’ in the astronomical garden?
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The Effect of Temperature on the
Spectrum of CH,OH
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Why Do we have the Weeds Problem?

Narrow Band Spectrometer and Bootstrap Analysis

BIAS

MULTIPLIER

ABSORPTION
CELL

INDIUM ||
ANTIMONIDE |
DETECTOR |f

WAVE-
METER

E=H
TUNER

COUPLER

PHASE

SHIFTER

KLYSTRON

IXER-

MIX
RECE“’E'i | MULTIPLIER

FREQUENCY

STANDARD

WwWvVB
COMPARAT!

PRE-

AMPLIFIER

TO DISPLAY

UPER -
ONDUCTING
MAGNET

InSb CRYSTAL

POWER
SUPPLY

SUBMILLIMETER
SPECTROMETER

Long searches for sparse spectra
(e.g. water)

Measure, Assign, Model and
Calculate Catalog (largely ground
vibrational state)

Good for Small Molecules (not all
lines had to be measured; large
vibrational frequencies lead to very
small excited vibrational state
populations)

For large and complex molecules,
~lifetime job security
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Bootstrap Analysis of
A and E Ground State Lines

THE MILLIMETER AND SUBMILLIMETER LABORATORY SPECTRUM OF METHYL FORMATE
IN ITS GROUND SYMMETRIC TORSIONAL STATE?

But this is only about 10% of lines
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But this Is a spectroscopic opportunity

THE LABORATORY MILLIMETER-WAVE SPECTRUM OF METHYL FORMATE
IN ITS GROUND TORSIONAL E STATE

GRANT M. PLUMMER Eric HERBST AND FRANK C. DE Lucia
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FAst Scan Submillimeter Spectroscopic Technique (FASSST) spectrometer
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he Classical Weed: Methyl Formate
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. < 0.01 second of data
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FASSST Attributes

1. Can record 10000-100000 resolution elements/sec
Freezes Source Frequency Drift

2. Can record entire spectrum in a few seconds
Freezes Chemistry Changes

3. ‘Locally’ intensity measurement is flat to ~1%
A basis for intensity measurement

But to be astronomically ‘complete,” we need intensities at
other, typically lower temperatures
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Absorption Coefficients

What You Need to Know to Simulate Spectra at an Arbitrary
Temperature T; without Spectral Assignment

a,_,=vh(l-e

-The matrix element
-The lower state energy

-The partition function



OHo
GUAUE

Department of Physics UIERS
Microwave Laboratory WAvE

Consider two lines, one assigned and one

unknown at t

Step 1. With Egn. 1 for bgth the known and unknow
equations and two unknowns:

1. The number density and partition function ratic
lab measurements

—E, [K(U/T,~1/T,)

t

n line, we have two

for the T, and T,

2. The lower state energy of the unassigned line

Step 2: Solve for the lower state energy of unassigned line

K k

al —>u,usgn(T1)

0(| —U,usgn (TZ)

E — I l al—>u,n (Tl) . |
e (1/T1 _1/T2) C al—>u,n(T2) s (1/T1_1/T2)

N

0£| —u,asgn (Tl)

Q'| —>u,asgn(T2)

peratures T, and T,

Eqgn. 1

Eqgn. 2
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Step 3. Form a ratio between the observed intensities of an
assigned and unassigned line at T,
gl—>u,usgn(T1) _ usgn (1 e usgn/le)

—-h /KT
a|_)u1asgn (Tl) asgn (1 e Vasgn 1)

2

/uusgn,l—>u

Zgl,usgn e—(El,usgn_El,asgn )/le Eqn 3

:ua sgn,l —>u gl,a sgn

Step 4: Combining with the lower state energy for the
unassigned line from the previous Eqn. 2, provides the
matrix element of the unassigned line

Step 5: To predict ratios at T, of the known (assigned)
reference line and unassigned line in the molecular cloud

2

:uu sgn,l —u

Viusan /KT
al—>u,usgn (TS) _ usgn (1 e ’ 3)

gl’usgn e_(El,usgn_El,asgn )/ KT, Eqn 4
hVas n /kT3
al—>u,a sgn (T3) asgn (1 € g )

2

lua sgn,l —u gl,a sgn
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The Combined Equation

1UTEAT
LN sgn (Tl) VLT,

04 —U, U sgn (T3 ) _ a] —U, usgn (Tl) 04 —U, usgn (TZ )
aﬁ—>u, asgn(T3) Q—)u, asgn (T1) 04—>u, asgn(Tl)
04 —U,asgn (TZ )
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Comparison of Energy Levels
Calculated from Experimental and
Quantum Calculations for SO,
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Comparison of Energy Levels
Calculated from Experimental and
Quantum Calculations for SO,
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Comparison of Intensities Calculated
from Experimental and Quantum
Calculations for SO,
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Spectra Calculated at 100 K and 200 K
from Measurements at 423 K and 293 K
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Propagation of Uncertainty (T, = 300 K)
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Collisional Cooling for low T,

Microwave Probe
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CH;F 77 K Rotational Temperatures in a
Collisional Cooling Cell as a function of
K-state: Experiment vs. Theory
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A Denser Spectrum: Diethyl Ether

I I I I I
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Ramp temperature too, then direct fits to the ~10° data
points of each recorded spectra provide a 3-D spectrum
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Considerations

Operationally: Rather than single reference, fit for all assigned lines.

For laboratory resolved spectra, results can be tabularized in exactly
same form as the results from quantum mechanical models.

Method provides accurate frequency measurements for all lines,
there is no model extrapolation uncertainty.

But, one looses the redundancy of the intensities calculated with
guantum mechanical models.

Need redundancy of multiple temperatures and perhaps of multiple
spectrometers.
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Summary and Conclusions

From experimental measurements at two temperatures T, and T,, it is
possible to calculate spectrum (with intensities) at an arbitrary T.

For low T,, arelatively low T, improves the accuracy of the calculated
spectrum.

Collisional cooling provides a general method for achieving this low T,,
with 77 K convenient and suitable for all but the lowest temperatures.

FASSST is a means of obtaining the needed data rapidly and with
chemical concentrations constant over the data collection period.

It is realistic in a finite time to produce catalogs complete enough to
account even for the quasi-continua that sets the confusion limit.

In the limit of ‘complete’ spectroscopic knowledge, the confusion limit
will probably be set by the unknowns associated with the complexity of
the astrophysical conditions, but the high spatial resolution of ALMA
should reduce this complexity.



« You've carefully thought out all the angles.
e You've done It a thousand times.

e |t comes naturally to you.

e You know what you're doing, its what
you've been trained to do your whole life.

* Nothing could possibly go wrong, right ?



Think Agalin.




