Data, Databases, Tools for Alma and Virtual Observatories

M.L. Dubernet

(Data: Rate coefficients, Basecol, MAGIX/ASAP, VO) LERMA, Paris Observatory, FR

> A. Walters (CASSIS: Analysis Software) *CESR, Toulouse, FR*

Supported by CNRS, EU (Molecular Universe FP6- RTN), French Virtual Observatory European Research Training Network-FP6 molecular universe molecular-universe.obspm.fr

Data (FP6 program on Thursday) Summerschool

- Spectroscopic data:
 - Carbon chains, PAH
- Reactions (lab. & theory)
 Carbon chains, PAH
- Rate coefficients for excitation processes
 (cf talk at IAU "Astrochemistry" , 2005, Asilomar)
- DBB/Tools: CDMS, UMIST, BASECOL, CASSIS

Rate coefficients for excitation processes Collisions with He, H₂ CH⁺, H₂O, HDO, NH₃, SO(³Σ), SiO, SO₂, N₂H⁺, H₂CO, HC₃N CO, CN (² Σ), CS, SiS CH3OH

Next :

Carbon chains, organic molecules High Temperature and bending modes

High Accuracy = Heavy CPU

See Poster 28: Wernli & al (HC₃N)

Requirements for Tools Implementation (I) VO: Interoperability of ressources in order to produce science (http://www.ivoa.net)

Observational Data

- Archives: well taken care in IVOA, cross correlation (ALMA working group)
- Theoretical/Observed Microphysics Data in Databases
 - Ex : CDMS/JPL, BASECOL, LOVAS catalogues, UMIST, etc
- Numerical Codes
 - Ex : Radiative transfert codes, Modelling codes
- Analysis tools/Visualisation
 - Analysis software (reduction pipeline, optimization algorithms, synthetic spectra): CASSIS, ASAP/MAGIX, etc

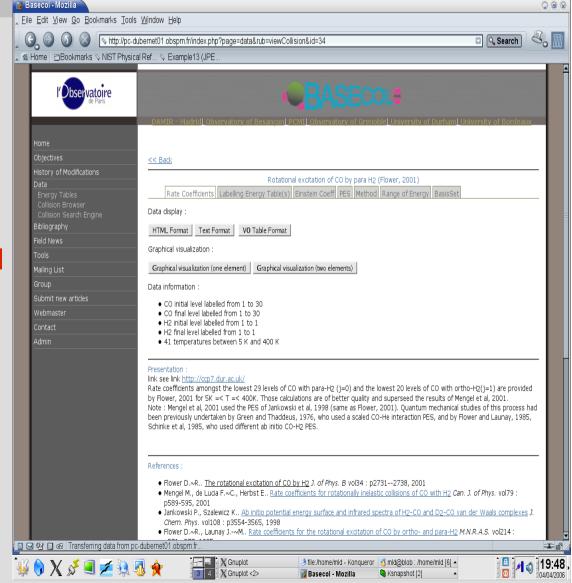
Requirements for Tools Implementation (II)

VO: Interoperability of ressources in order to produce science (www.ivoa.net)

Full description of all data

- Microphysics:
 - references, methods, accuracy
- accuracy
 - . Identify measurements/calculations from extrapolation
- Codes:
 - Identify hypothesis, algorithms, parameters
- Use standardized exchange langage
- Long term maintenance
- Deal with various sources: Basecol database (rates with H, He, H₂), Leiden database (rates with H₂) --> F.
 Schoïer, CDMS --> H. Müller, JPL, etc...

Basecol Database http://www.obspm.fr/basecol


ML Dubernet LERMA, Paris Observatory

Present Engineer: N. Moreau^{*} Present Contributors: M.L. Dubernet^{*}, F. Daniel^{*}, D. Flower^{***}, A. Grosjean^{**} Past Contributors: B. Debray^{**}, G. Souemes^{*}

Supported by LERMA, Scientific Counsel of Paris Observatory, National Program « Physico-Chimie du milieu interstellaire », NSF "Masse de Données en Astrophysique" project * LERMA, Paris Observatory ** Besançon Observatory *** Durham University, UK Basecol Database http://www.obspm.fr/basecol Useful for astrophysicists and physicists Published (de)-excitation rate coefficients

• Rotational (fine, hyperfine)

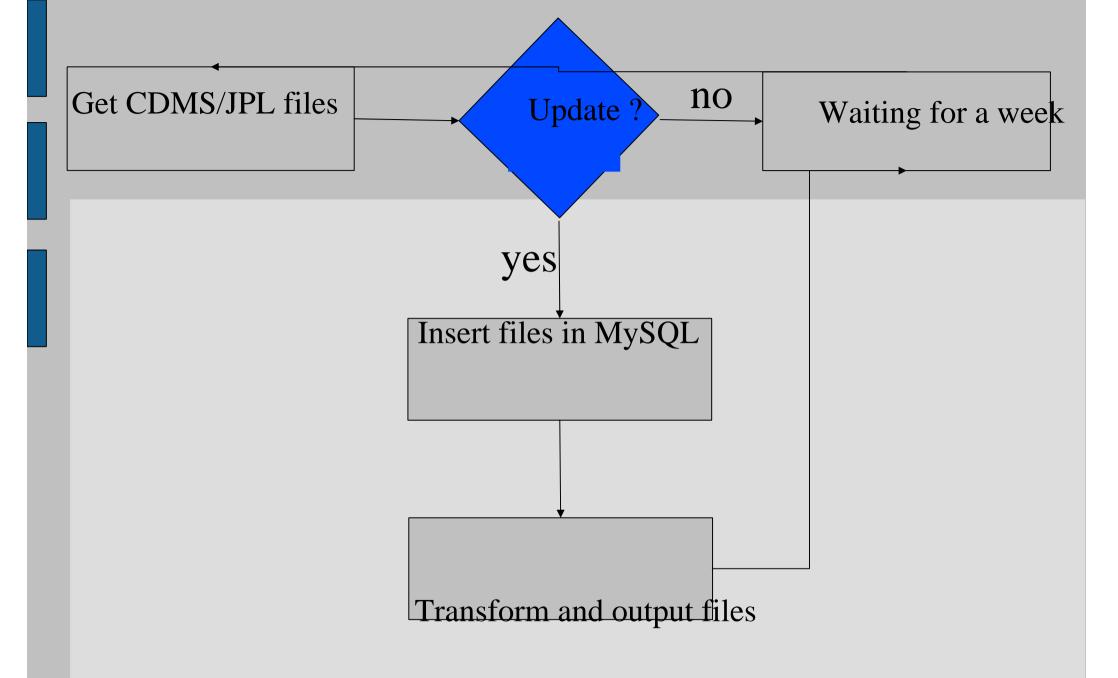
- Ro-vibrational, Vibrational
- Currently: 21 Target molecules
- Perturbers : He, H, H₂ (not exhaustive)
- 76 collisional systems
- Fully documented and referenced (630 ref.)
- Linked to
 - CDMS or JPL
 - Theoretical energy levels
- Fitting coefficients, Visualisation tools
- Under Test: NH₃, CH₃CN

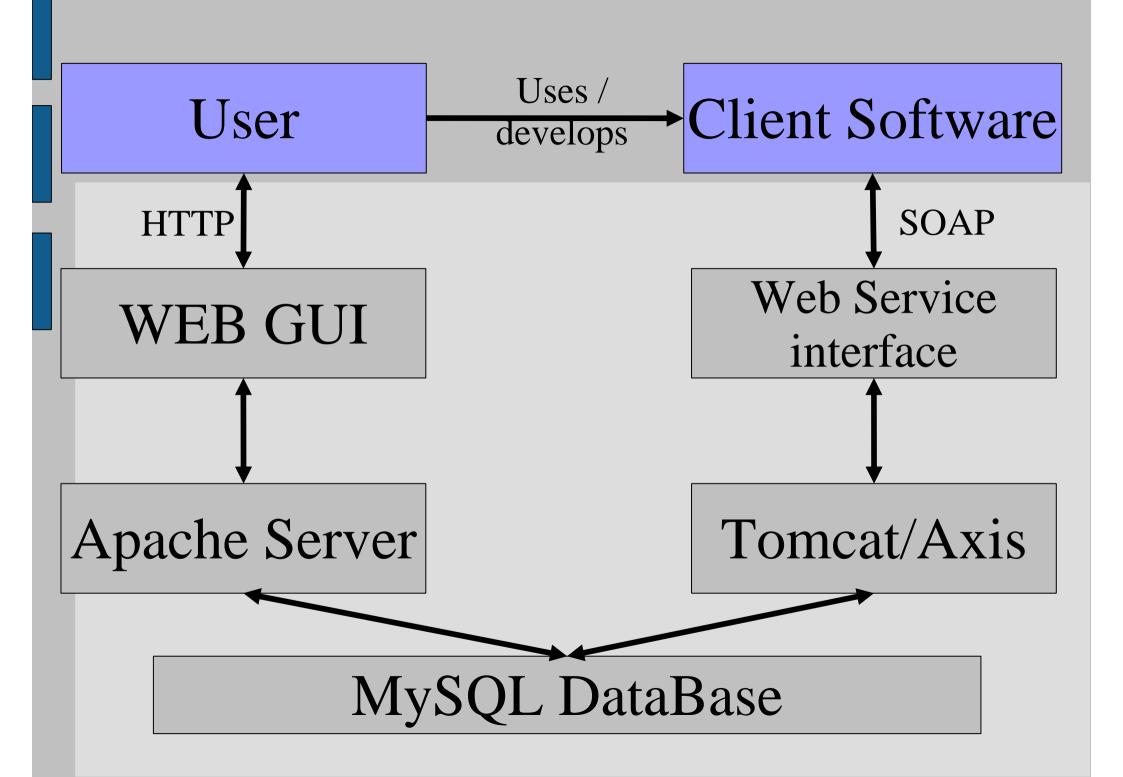
Origin of Data : All papers carefully read

- Tables in Database
 - Careful check by detailed balance, F. Daniel
 - Rate coefficients and fitting functions
 - Theoretical energy levels
- Long term maintenance
 - Team of physicists

– Software engineer and VO-Paris Data Center

• Official opening: Published paper (June 06)


🗾 В	asecol - Mozilla		📷 Mozilla								
Eile Edit View Go Bookmarks Tools Window Help						Ele Edit View Go Bookmarks Tools Window Help Image: Comparison of the state of the					
C) () () () () () () () () () () () () ()	dubernet01.obspm.fr/index.php?pag		ookmarks Tools Window Hel	n frimate	∃Bookmarks 🦠 NIST Physic					
			_ ≤ Home Bookmarks	s 🛇 NIST Physical Ref 🛇 Exa		lines : 29					
<u> </u>	🖞 Home 🛛 🖻 Bookmarks 🛇 NIST Physical Ref 🛇 Example13 (JPE		1 0.0000 0 0 2 3.8450 1 0 3 11.5350 2 0		Initial 2	level Final level	115271.2018	2018 7.2034148e-8		Log(A) Uncertainty -7.1425 0.0005	
	l'Observatoire de Paris	DAMIR - Madrid <u>L</u> Observat	4 23.06 5 38.44 6 57.67 7 80.73 8 107.64 9 138.39 10 172.97 11 22.53.66 13 229.76 14 349.69 15 403.46 16 461.05 17 522.47 7 522.47	31 4 0 94 5 0 54 6 0 24 7 0 94 8 0 94 10 0 91 10 0 95 12 12 96 12 14 0 97 13 0 12 12 14 0 0 151 15 0 0	3 4 5 6 7 8 9 10 11 12 12 13) 9 1 10 2 11 4 12	1267014.4860 1381995.1050	2.49 6.12 1.22 2.13 3.42 5.13 7.32 1.00 1.33 1.73	1655880=-6 -5 122740e-5 -4 174069e-5 -4 139745e-5 -4 19304e-5 -4 19305e-4 -3 190036e-4 -3 153034e-4 -3	$\begin{array}{cccc} 1.605 & 0.0005 \\ .6027 & 0.0005 \\ .2128 & 0.0005 \\ .9132 & 0.0005 \\ .4657 & 0.0050 \\ .4657 & 0.0050 \\ .2895 & 0.0050 \\ .1349 & 0.0050 \\ .9972 & 0.0110 \\ .8732 & 0.0050 \\ .7606 & 0.0130 \end{array}$	
	Home		18 587.72 19 656.78 20 729.67	09 17 0 92 18 0	14	14	1611793.5180	2.73	90517e-4 -3	.6575 0.0120 .5624 0.0110 .4745 0.0024	
	Objectives	< Back to collision's details	21 806.38 22 886.90 23 971.23	24 21 0 32 22 0	16 17 18	10	1841345.5060	4.05	600226e-4 -3	.4745 0.0024 .3925 0.0110 .3161 0.0110	
	History of Modifications		24 1059.37 25 1151.31 26 1247.05	50 24 0 92 25 0	19		2185134.6800	6.65	02238e-4 -3	.2445 0.0140 .1772 0.0130 .1138 0.0100	
	Data Energy Tables Collision Browser Collision Search Engine Bibliography	CO initial levels : 1-3 H2 initial levels : 1-1	1	50 27 0 07 28 0	18 19 20 21 23 23 24 25 26 27 28 27 28 29 29	20	2413917.1130 2528172.0600 2642330.3459 2756387.5840 52870339.4070 5284181.4550 3097909.3610		31834e-4 -3 164098e-3 -2 189669e-3 -2 106260e-3 -2 118806e-3 -2 206220e-3 -2 114786e-3 -2	.1138 0.0100 09539 0.0110 .9972 0.0110 .9435 0.0039 .8826 0.0170 .8441 0.0130 .7980 0.0140 .7541 0.0170	
	Bibliography	CO final levels : 1-3	1		30	25	3325005.2827	2.12		.6723 0.0051	
	Field News Tools	H2 final levels : 1-1									
	Mailing List	Temperatures : 5-4	Done 🖉 🖬 🖉 Done	I ≠ 强 🚮 🔶	122						
	Group	Enter numbers (separated by Example : 1;9-21;23			'-')						
	Submit new articles				1						
	Webmaster	1 : CO 2 : H2				🕫 Done 🎸 💉 🗐 差 强 🛙	a 🔺 🖂	X Gnuplot X Gnuplot <2>		queror 🛛 🚳 mid@blob : /home/m	1d [6] •
	Contact	I1 F1 I2 F2 5	10	20	30	1 0	🤒 其 🛛 🔤 🔤	€0	70	Ksnapshot [5] 80	
	Admin	1 1 1 1 +3.55e-09	+2.72e-09	+2.02e-09	+1.9e-09	+1.94e-09	+2.02e-09	+2.13e-09	+2.19e-09	+2.28e-09	
		1 2 1 1 +2.53e-11	+4.85e-11	+6.45e-11	+7.48e-11	+7.98e-11	+8.4e-11	+8.86e-11	+9.32e-11	+9.62e-11	
		1 3 1 1 +3.82e-12	+2.17e-11	+5.54e-11	+7.73e-11	+9.4e-11	+1.04e-10	+1.14e-10	+1.18e-10	+1.26e-10	
		1 4 1 1 +5.84e-14	+1.63e-12	+8.89e-12	+1.65e-11	+2.39e-11	+3.06e-11	+3.74e-11	+4.29e-11	+4.9e-11	
		1 5 1 1 +2.67e-16	+7.21e-14	+1.3e-12	+3.64e-12	+6.34e-12	+9.09e-12	+1.18e-11	+1.42e-11	+1.67e-11	
			+1.83e-15			+1.62e-12				+8.8e-12	
		1 7 1 1 +1.72e-22									
		1 8 1 1 +1.44e-26									
		1 9 1 1 +2.58e-30				+5.96e-14					
		1 10 1 1 +3.39e-35									
				+5.18e-20						+1.25e-14	
		1 12 1 1 +1.4e-45		+3.18e-20 +8.99e-22							
				+8.996-22							-
	🛛 🖭 🗊 🚾 Done				7.1976-20				-F 1 / F=10		≕∎ 🖌


Complet

Ite:/home/mld - Konqueror 3 mld@blob : /home/mld [6]

19:49 ,

Basecol Web Service

- Query for a single molecule
 - Query for a process
 - Query for a collider
 - Query for a temperature range

Get

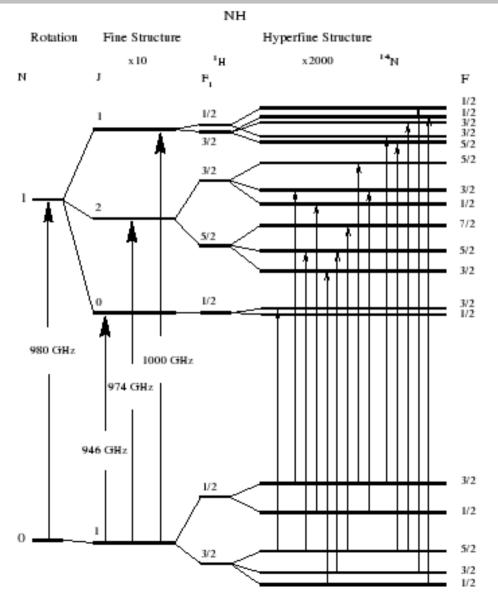
- Rate coefficients
- Theor. and experim. energy levels
- Einstein coeff. and statist. weights
- Errors
- Fits
- Documentation

Client for MOLPOP (M. Elitzur) Get collisions, CDMS/JPL

- Retrieve all data or some data
- Return VOTable and ascii files
- mol.lev, mol.aij, mol_col1.kij, mol_col2.kij
- Create a file with all names

AUTOMATIC ACCESS

Link to PDR: Get collisions only


- Query Parameters
 - TARGET, COLLIDER
 - . initial_level, final_level
- Return VOTable with
 - List of collisions with TARGET +
 COLLIDER
 - . Link to energy tables (basecol)
 - . Link to fitting coefficients Get CDMS/JPL data
- Query Parameters
 - TARGET, COLLIDER
 - initial_level_energy, final_level_energy
- Return VOTable with
 - . List of collisions with TARGET + COLLIDER
 - . Link to energy tables (basecol)
 - . Link to CDMS values
 - Einstein coefficients, frequency, stat. weight...

EXCHANGE LANGAGE= XML OUTPUT FORMAT NOT AN ISSUE

Service for ASAP/MAGIX (very close to SLAP) Get all CDMS/JPL + BASECOL

- Query Parameters
 - Frequency_min
 - Frequency_max
 - Chemical_element
 - Chemical_element_symmetry
- Return list of transitions with:
 - Chemical_element, Chemical_element_symmetry
 - Initial_level_energy, Einstein_Coefficient, g_up
 - Quantum_number_tag,id_chemical_element,
 - Data_source, creation_date
 - Link to quantum numbers (URL)
 - Link to all collisions with TARGET, to documentation

Spectral Line Access Protocol IVOA standard : SLAP

Paris Observatory and ESA/ESAC

ML Dubernet, P. Osuna, M. Guanazzi, J. Salgado, E. Roueff

MLD acknowledges support from VO-France, MDA project (F. Genova), Paris Observatory

Atomic and Molecular Lines Data Model

International Virtual Observatory Alliance

Atomic and Molecular Lines Data Model

Version 0.5 Draft Document 30 January 2006

This version: ThisVersion-30Jan2006 Latest version: http://www.ivoa.net/Documents/latest/LDM_v0.5 Previous versions:

Editors: Pedro Osuna, Matteo Guainazzi

Authors:

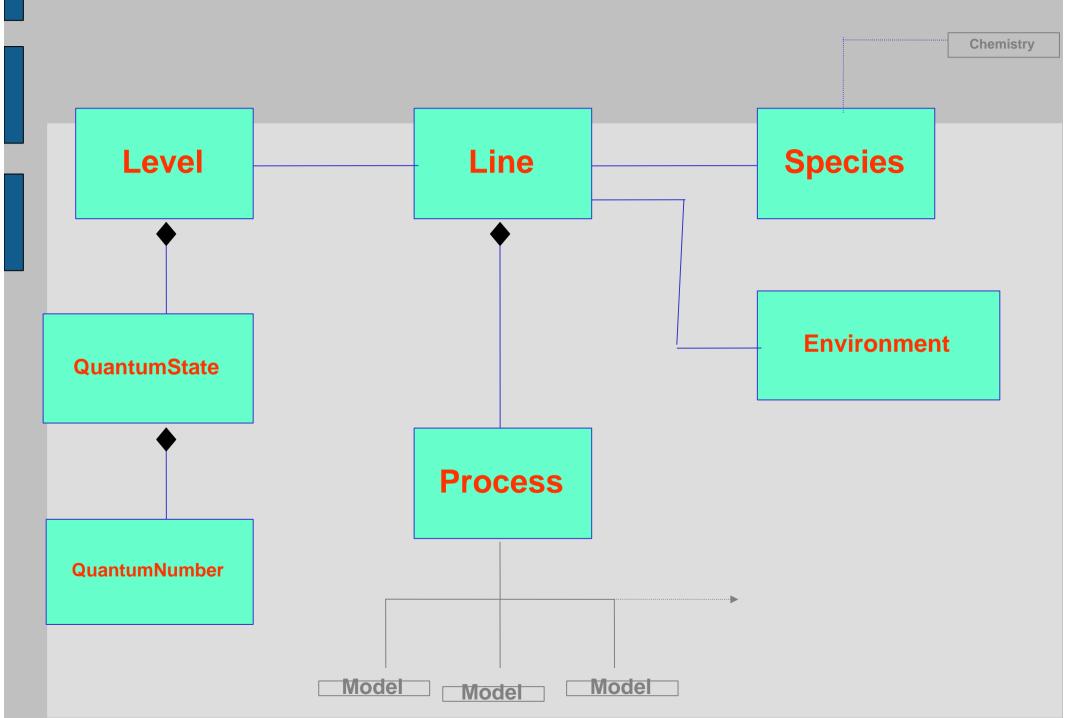
Marie-Lise Dubernet Pedro Osuna Matteo Guainazzi Jesus Salgado Evelyne Roueff

Status of This Document

This is an IVOA Working Draft for review by IVOA members and other interested parties. It is a draft document and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use IVOA Working Drafts as reference materials or to cite them as other than "work in progress".

A list of current IVOA Recommendations and other technical documents can be found at http://www.ivoa.net/Documents/.

AML DM Current version: 0.5 (30/1/2006)
SLAP Current version: 0.1


• circulated to the DM and DAL groups, as well as to atomic and molecular astrophysicists for comments

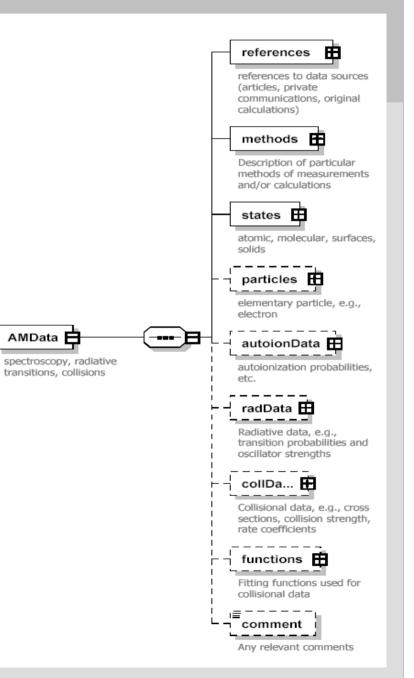
 Ultimate goal: achieve the status of a proposed recommendation by the next InterOp meeting for AML DM

•Useful for ETL studies and calibration

Starting document for ALMA working group (Linelists)

Structure

Line


<u>Scope</u>: describe the overall properties of the observed line, and of its corresponding transition Attributes:

Spectral Data Model

- Observational properties:
 - wavelength
 - intensity/flux
 - significance
 - broadening
 - wavelength shift
- Transition properties:
 - Einstein coefficients
 - oscillator strengths
 - transition type

Perspective for Atomic and Molecular Data

- Access to linelists: SLAP is currently implemented on CDMS/JPL (all QN properly identified, symmetry)
- Standardization of Access to other data (ex: rate coefficients of Basecol)
 - Working Group of Atomic and Molecular Physicists from NIST, IAEA, Oackridge, NIFS, Paris Observatory (Paper at ICAMDATA, Meudon, Octobre 2006)
 - Model will be proposed to IVOA by WG

Max-Planck-Institut Radioastronomie

Generic Interface to Numerical Codes for Science Data Analysis and Modelling

Frédéric Boone (LERMA) Peter Schilke (MPIfR) Dirk Muders (MPIfR) Marie-Lise Dubernet (LERMA)

Motivation

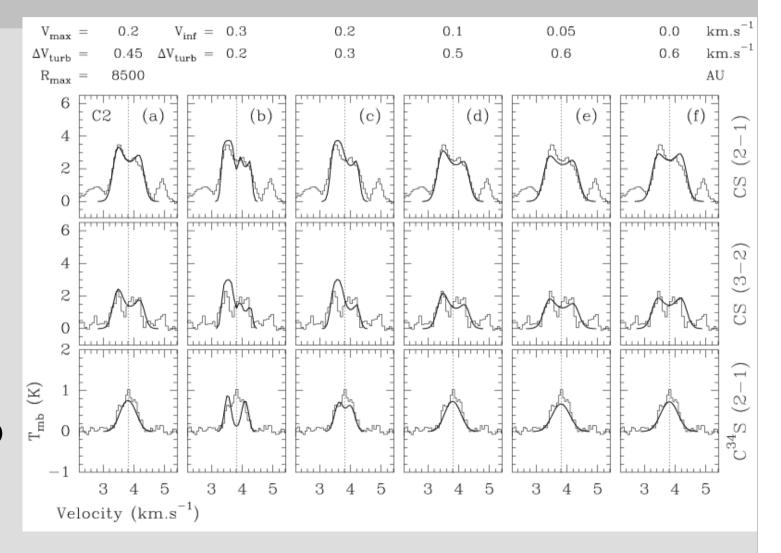
- New instruments: large amount of data
- Provide an interface
 - with an number of « public codes »
 - With different analysis tools
 - With various visualisation tools
 - For individuals to use with their private codes (public?)
 - For a collaboration to implement complementary codes such as dynamics + chemistry + radiative transfer
- Common needs
- Optimization loop to fit the model to the data with constraints and error estimation
- Interactivity (control the model parameters)
- Molecular data --> query molecular databases

Examples summary

. EX I (line surveys)

- Link to spectroscopic/rate coefficients databases
- Ability to easily control a large number of params
- Radiative transfer
- . EX II (protostellar envelopes)
 - Several models in line (dynamics + radiative transf.)
 - Several kinds of data (spectra+images)
- . EX III (galactic dynamics)
 - Need ability to compare different kinematic models to data cubes

Example II – protostellar collapse


Collapse model

Radial profiles

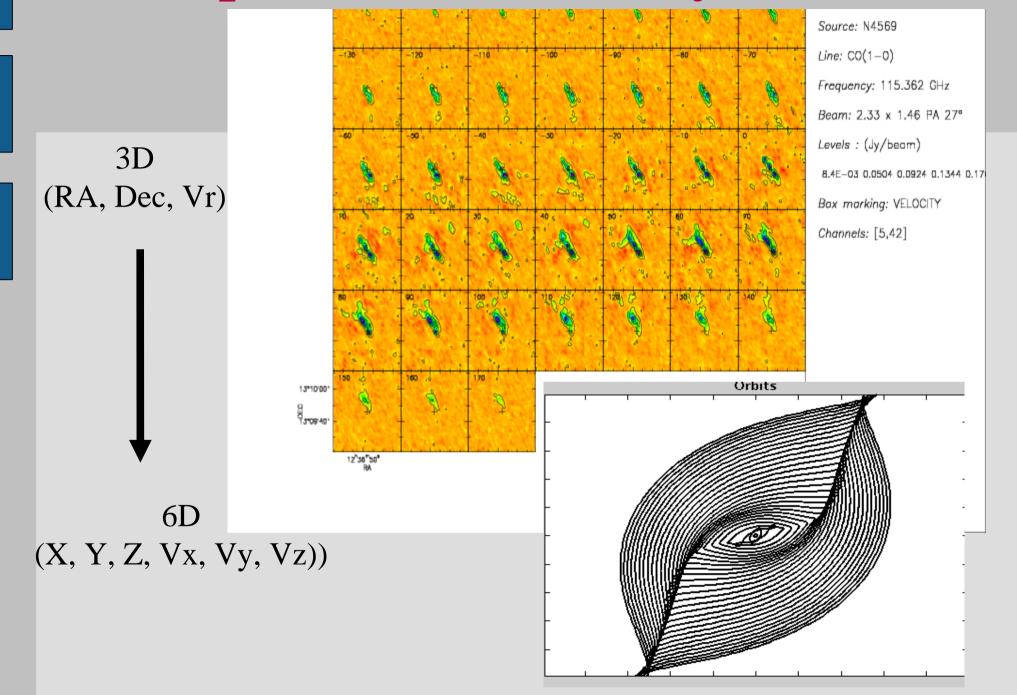
Temperature Density velocity

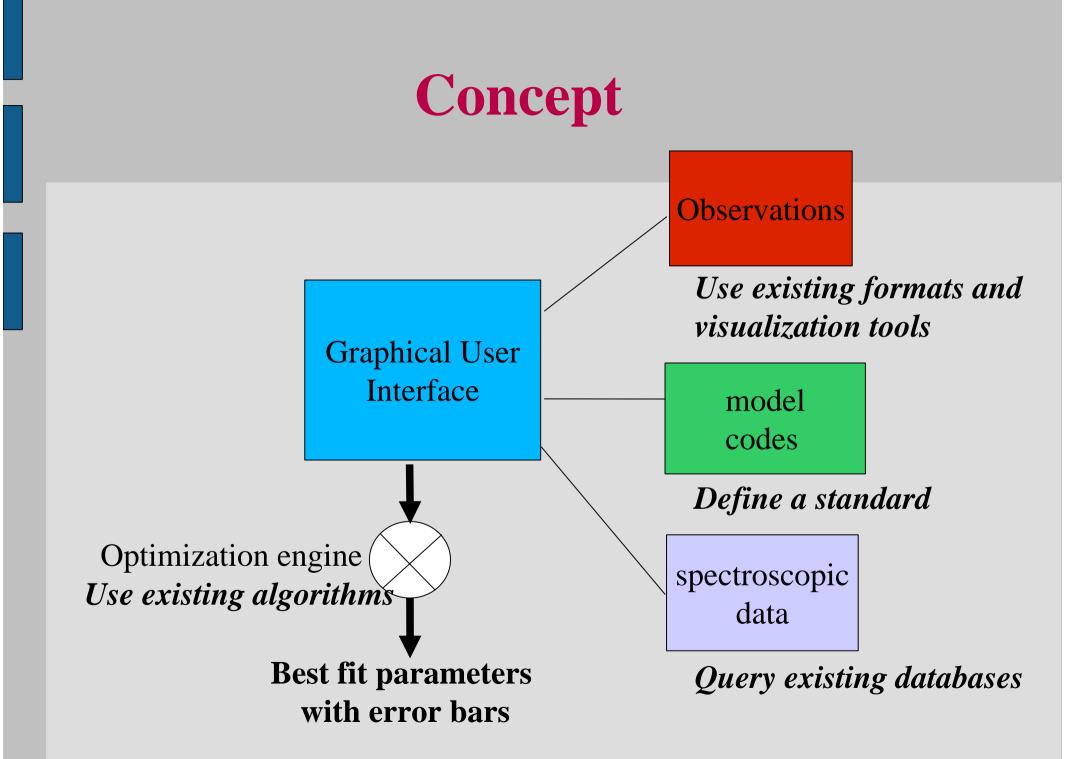
Radiative Transfer BERNES-MAPYSO

Simulated spectra

Arnaud Belloche 2002, PhDT

Example III – Galactic dynamics


. Gas kinematics in the center of galaxies


- Evolution of galaxies, AGN fueling, Black Hole growth, Starburst/AGN connection
- NUGA survey (PI: S. Garcia-Burillo, F. Combes)
 - Survey of 12 nearby active galaxies with IRAM
 Plateau de Bure Interferometer CO(1-0) and
 CO(2-1)

. Kinematic modeling

- Use assumptions on orbits to reproduce observations
- The aim is to "deproject" the data to obtain a 6D description

Example III – Galactic dynamics

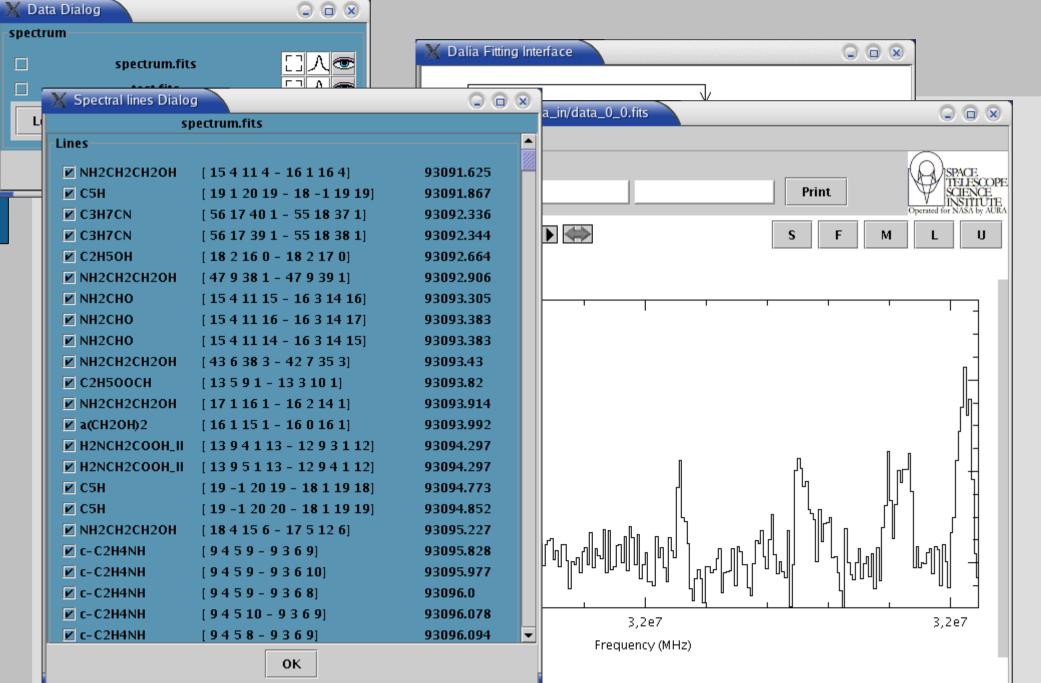
A prototype, DALIA (Direct Approach to Spectral LIne Analysis)

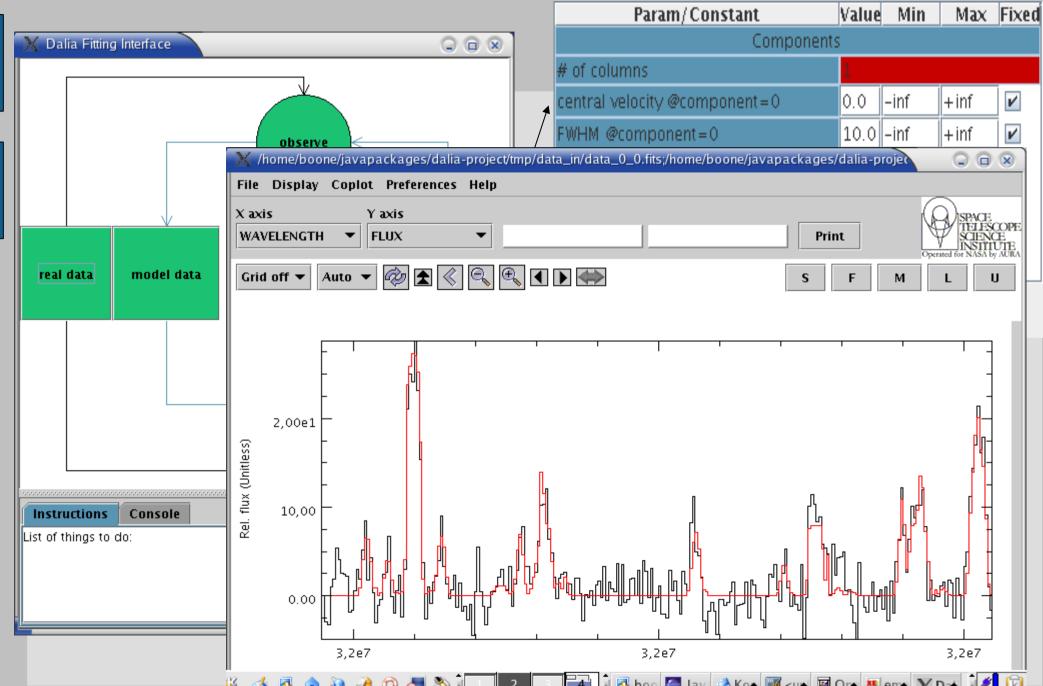
Main functionalities

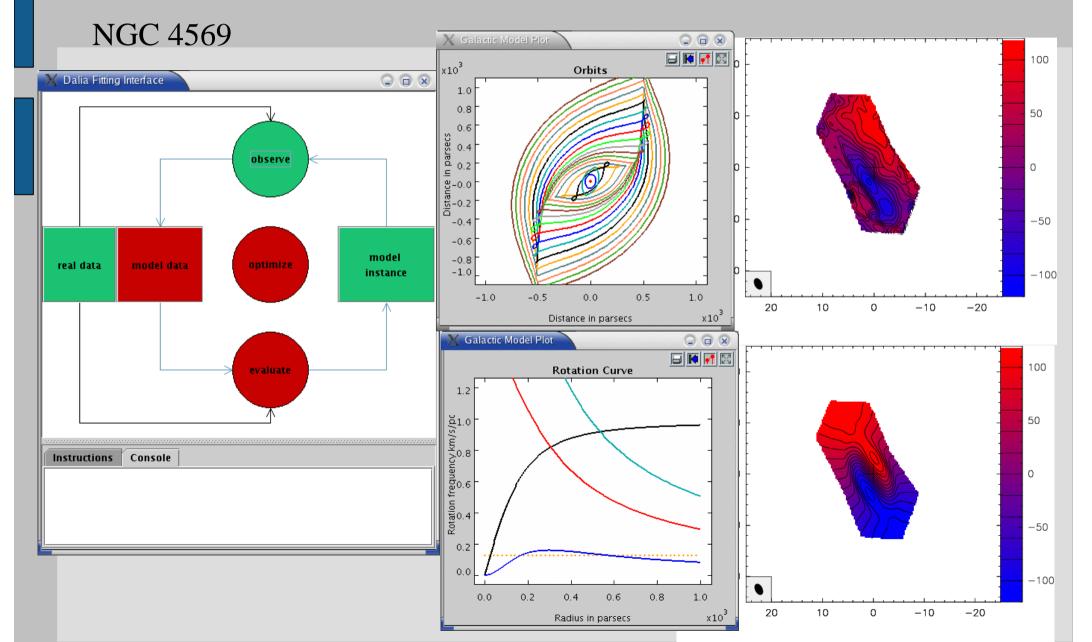
- Edit parameters of a model to create a first guess
- Fit the model to the data (1D, 2D, 3D) via optimization
- Constrain the parameters
- Include spectroscopic data from molecular databases
- Allow to introduce any new model code (Fortran, C...)

. Implementation

- GUI in JAVA
- Description of models in XML following a "schema"
- Interface GUI/models: ASCII for params and FITS for data
- Visualization: Specview (spectra) Jimage (2d & 3d)


. Create a model instance (first guess)


🗙 Dalia Menu 💿 🗆 🛞	🗙 Ouvrir 🗇 🛛
Main Menu	Rechercher dans : 🗂 models 🔹 🖬 🖬 🖽 🖽 🖽
include a new model	 galactic simple YSO
Create a model / instance	
	Nom de fichier :
Fit/Observe a model instance	Fichiers du type : xml files
	Ouvrir Annuler


. Create a model instance of a galactic model

GUI generated by the XML description of the model

X Model Editor		
File		X Galactic Model Plot
Galactic Potential Model		
Situation Potential Distribution Plots		Rotation Curve
		1.2
Axisymmetric potential		
Potential type Plummer 🗸 🔻		
Length scale [pc] 200.0		
Mass parameter [10**6 Msolar] 100.0		
Perturbation		Rotation frequency km/s/pc 8.0 km/s/pc
Mode 2 🔻	\land	
Strength -0.05		0.2
Pattern speed [km/s/pc] 0.13		0.0
radial dissipation rate [km/s/pc] 0.03		
azimuthal dissipation rate [km/s/pc] 0.03		0.0 0.2 0.4 0.6 0.8 1.0
		Radius in parsecs x10 ³
Save Model in file: Browse		[\] Choices

DALIA Pieces of C-code be included in

XML file describing the model

the model code to read input

🔚 Java - galacticpotentialmodel.xml - Eclipse Platform	ana ana ana ana ang ang ang ang ang ang			🗙 Code Display				
File <u>E</u> dit <u>N</u> avigate Se <u>a</u> rch <u>P</u> roject Run <u>X</u> MLmodeling Window	Model input Molecules input Spectro input							
□ □ + 🖩 🎍 券 + ○ + 9 + 12 🛱 G + 29 🔗 🍫 ⇔ + ∞ + 2				Insert the following definitions at the beginning of etIgauss.c				
🚰 galacti 🗙 🕡 DataDia 🕡 Data.java 🛛 Fitting 🕡 Sub	SetD	🕽 ParamFi	<u>≴</u> nas	#define MAXARRAYSIZE 1000				
xml version="1.0"? <amns:astromodelschema xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:amns="astromodelns"> <title>Galactic Potential Model</title></amns:astromodelschema 				void readmodelparams(int *ncomponents, float vc[], float fwhm[], Insert the following declarations at the beginning of your code in et int ncomponents; float vc[MAXARRAYSIZE], fwhm[MAXARRAYSIZE], relampl[MAXARRAYSIZE], o				
<routinesection></routinesection>								
<pre><srcname>barmod.c</srcname> <binaryname>barmod</binaryname> <programminglanguage>C</programminglanguage> <section> <title>""</title> <subsection> <title>Routine parameters</title> <param xsi:type="amns:ParamFloat"/></subsection></section></pre>				/**initialize by calling readmodelparams**/ readmodelparams(&ncomponents, vc, fwhm, append the following code at the end of the file etIgauss.c				
								<pre><name>Cloud col. dens.</name> <varname>cdens</varname> <unit>10**20/cm**2</unit> <description>Column density of clouds</description> <default>1.0</default> <td></td><td colspan="4">void readmodelparams(int *ncomponents, float vc[], float fwhm[], float relampl[], float comptemp[], float compcoldens[], float compsousize[])</td></pre>
printf("start reading params in /home/boone/javapackages/dalia-project, if((prf=fopen("/home/boone/javapackages/dalia-project/tmp/modelpara								
			<pre><default>100</default> </pre>					
			<pre><pre><pre><pre>cparam xsi:type="amns:ParamFloat"></pre></pre></pre></pre>					
	itable	Insert	8:2	printf("ERROR: cannot open file /home/boone/javapackages/dalia-p	roject/tm 🖵			
	abic	moen	0.2.					

Summary

- new generation of software for science analysis and knowledge sharing
- a concept: "wrapping rather than reinventing"
- . Development open to the community
- . Extensions
 - Association with computing resources: parallel computing
 - Association with archive facilities (VO) for the data
 - Workflows (VO)