### Intra- and intermolecular dynamics of cyanoacetylene and its complexes with helium

Robert Moszynski

## Quantum Chemistry Laboratory, Department of Chemistry University of Warsaw, Poland

Physics and chemistry of complex molecules: the laboratory approach Aarhus, Denmark, 8-11.05.2006

# Outline of the talk

- **1.** Cyanoacetylene molecule: discovery and history of spectroscopic studies
- **2.** Intramolecular dynamics of cyanoacetylene
  - Potential energy surface: state-of-the-art ab initio calculations
  - Theoretical spectroscopy in the microwave and infrared regions: nearly exact dynamical calculations

#### **3.** Numerical results

- Molecular structure from ab initio calculations
- Potential energy surface: role of the anharmonic effects
- Rovibrational energy levels: impact of various approximations
- Perturbed levels: a stringent test of the theory
- 4. Intermolecular dynamics of complexes with helium
- **5.** Forthcoming new developments

Cyanoacetylene molecule: discovery and history of spectroscopic studies

- 1. First synthesis: Moureu and Bongrand, 1920
- 2. First spectroscopic observation and structure determination: Westenberg and Bright Wilson, 1950
- **3.** High-resolution laboratory spectroscopy: over 40 experimental studies covering the frequency range from the microwave to the near-infrared regions
- 4. Theoretical studies: scarce, less than 20 papers published, accurate data ina few papers, no systematic study of the intramolecular dynamics

- **5.** Astrophysical observations
  - first detection: Turner, 1971
  - assignment of interstellar rotational transitions: de Zafra, 1971
  - observation of cyanoacetylene in dense interstellar clouds: Morris et al., 1976
  - detection of interstellar vibrationally excited cyanoacetylene: Clark et al., 1976
  - obervation of cyanoacetylene in Titan's atmosphere: Kunde et al., 1981
  - obervation of vibrationally excited cyanoacetylene in Orion: Goldsmith, 1983
  - observation of *all* vibrational fundamentals bands of cyanoacetylene in hot molecular cores: Wyrowski et al., 1999

## Intramolecular dynamics of cyanoacetylene

- 1. Linear molecule with N = 5 atoms
  - -3N-5 = 10 degrees of freedom
  - -N-4 = 6 bending vibrational modes
  - -N-6 = 4 stretching vibrational modes
- 2. Low-frequency modes almost harmonic  $\rightarrow$  no large amplitude motions expected  $\rightarrow$  the use of normal coordinates correct
- 3. Very small rotational constant  $\approx$  0.15  $\rm cm^{-1} \rightarrow high$  density of molecular states
- 4. Bending modes doubly degenerate  $\rightarrow$  carrying vibrational angular momentum  $\rightarrow l$ -doubling of rovibrational levels with  $J \neq 0$

# Potential energy surface: state-of-the-art ab initio calculations

- **1.** Method: CCSD(T)
  - based on the many-body theory of fermionic systems
  - size-consistent
  - highly-correlated
  - preserving spin and spatial symmetry
- **2.** One-particle basis: cc-pVQZ

## Potential energy surface: symmetries

- 1. Terms depending on a single set of bending coordinates  $(q, \alpha)$ 
  - leading term harmonic in q, independent of  $\alpha$
  - anharmonic terms: even powers of products of q,  $\cos \alpha$ , and  $\sin \alpha$
- 2. Coupling terms depending on two bending coordinates  $(q_1, \alpha_1)$ and  $(q_2, \alpha_2)$ 
  - at least quartic or higher-order

3. Terms depending on a single stretching coordinate z

– leading term harmonic in z

– anharmonic terms: cubic or higher order in z

- 4. Coupling terms depending on two stretching coordinates  $z_1$  and  $z_2$ 
  - at least quartic or higher order
- 5. Coupling terms depending on one set of bending coordinates  $(q, \alpha)$  and one stretching coordinate z

- at least cubic or higher order

### Theoretical spectroscopy in the microwave and infrared regions: nearly exact dynamical calculations

- **1.** Watson's isomorphic Hamiltonian
  - kinetic term

$$T=T_{
m rot}+T_{
m vib}+T_{
m rot-vib}$$

– rotational term

$$T_{
m rot} = b(z_1, z_2, z_3) (J^2 - J_z^2)$$

– vibrational term

$$egin{split} T_{ ext{vib}} &= rac{1}{2}b(z_1, z_2, z_3)(L^+L^- + L^-L^+) \ &- rac{1}{2}\sum_{i=1}^3 (rac{\partial^2}{\partial q_i^2} + rac{1}{q_i^2}rac{\partial^2}{\partial lpha_i^2}) - rac{1}{2}\sum_{j=1}^4 rac{\partial^2}{\partial z_j^2} \end{split}$$

– rotation-vibration coupling term

$$T_{
m rot-vib} = b(z_1,z_2,z_3)(L^+J^-+L^-J^+)$$

**3.** Total wave function

$$\Psi^p_{JM} = \sum_{\{n_i\}} \sum_{\{n_j\}} \sum_K c_{\{n_i\},\{n_j\},K} \Phi^{JMp}_{\{n_i\},\{n_j\},K}(\phi,\theta,\alpha,q_1,q_2,q_3,z_1,\ldots,z_4)$$

**4.** Basis functions

$$egin{aligned} \Phi^{JMp}_{\{n_i\},\{n_j\},K}(\phi, heta,lpha,q_1,q_2,q_3,z_1,\ldots,z_4) = \ &(D^{(J)^{\star}}_{MK}(\phi, heta,lpha)+p(-1)^JD^{(J)^{\star}}_{M,-K}(\phi, heta,lpha)) \ & imes \mathcal{R}_{\{n_i\},\{n_j\},K}(q_1,q_2,q_3,z_1,\ldots,z_4) \end{aligned}$$

- rotational part

$$D_{MK}^{(J)^{\star}}(\phi, heta,lpha)$$

– bending functions

$$\prod_{i=1}^3 \chi_{n_i k_i}(q_i)$$

– stretching functions

$$\prod_{j=1}^4 \phi_{n_j}(z_j)$$

**5.** Hamiltonian matrix

$$\langle \Phi^{JMp}_{\{n_i\},\{n_j\},K}|T+V|\Phi^{JMp}_{\{n'_i\},\{n'_j\},K'}
angle$$

- 6. Size of the matrix  $\sim 10^6 \rightarrow$  Davidson algorithm for diagonalisation
- 7. Possible approximations
  - in the potential: harmonic, anharmonic without intermode couplings, etc.
  - in the kinetic operator: harmonic plus rigid rotor, anharmonic without rotation-vibration coupling, etc.

## Numerical results: molecular structure

Spectroscopic constants of cyanoacetylene: comparison of the theory with experiment

|                      | theory   | experiment |
|----------------------|----------|------------|
| $r({ m HC}_1)$       | 1.062    | 1.057      |
| $r(\mathrm{C_1C_2})$ | 1.206    | 1.205      |
| $r(\mathrm{C_2C_3})$ | 1.376    | 1.378      |
| $r(\mathrm{C_3N})$   | 1.161    | 1.159      |
| $B_0$                | 4549.059 | 4550.140   |
| $lpha_7$             | -14.388  | -14.455    |

# Numerical results: potential energy surface



### Numerical results: rotational transitions and comparison with experiment

 $J' = 7 \rightarrow J'' = 6$  transition frequency in the  $\nu_7$  vibrational band: comparison with the experiment

|                       | theory  |         | experiment |         |
|-----------------------|---------|---------|------------|---------|
|                       | e       | f       | e          | f       |
| harmonic              | 21.3    | 3111    |            |         |
| anharmonic pot. only  | 21.2    | 2843    |            |         |
| anharmonic no vibrot. | 21.2    | 2105    |            |         |
| full calculation      | 21.1772 | 21.2436 | 21.2453    | 21.2574 |
| l dubling             | 0.0     | 664     | 0.0        | 121     |

### Forthcoming new developments

- 1. further checks of the codes, and inclusion of the multimode couplings  $\rightarrow$  work in progress in Warsaw
- 2. increase of the efficiency of the code, larger basis calculations  $\rightarrow$  work in progress in Warsaw
- 3. generalization of the dynamics to the He–cyanoacetylene case  $\rightarrow$  work in progress in Warsaw and in Meudon
- 4. computation of the potential energy surface for He interacting with flexible cyanoacetylene  $\rightarrow$  work in progress in Warsaw
- 5. (full close-coupling???) calculations of the rate constants for rovibrational deexcitations of cyanoacetylene in collisions with He  $\rightarrow$  work in progress in Meudon