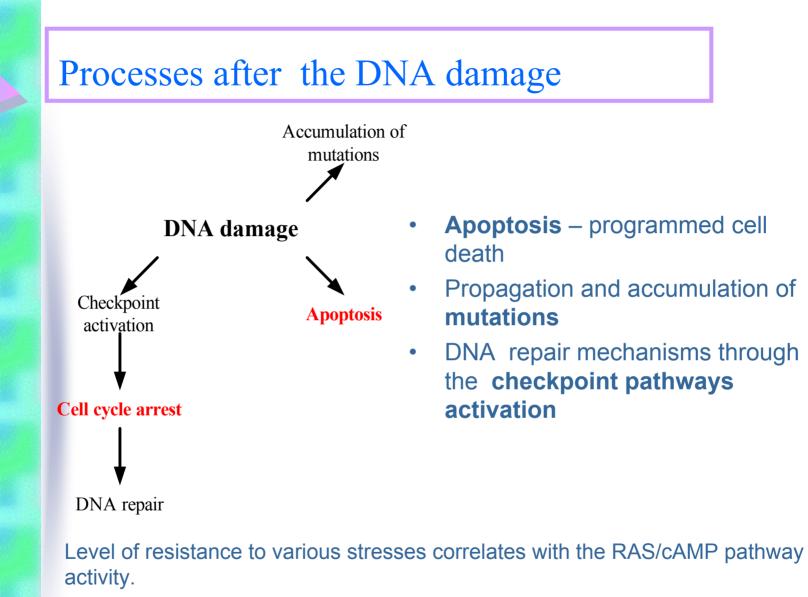
COST P9, February 27, Dublin, Ireland

Radiation Damage in Yeast Saccharomyces cerevisiae Physiological Environment

R. Plukienė¹⁾ and B. Remeikytė²⁾

(1) Institute of Physics, Vilnius, Lithuania(2) Vilnius University Faculty of Natural Sciences


Yeast - unicellular model microorganism:

- high growth and reproduction rates
- many similarities with higher eukaryotic cells
- simple and well characterized genome
- easy to manipulate

Sensitivity to radiation:

Low dose effects at 0.1 - 2Gy. High dose – up to 800Gy.

Adaptive response could be caused by the misfolded proteins – prions: yeast strains growth on acid media showed apoptosis, while induction of prions prevent apoptosis.

Objectives of investigations

Modelling:

 \checkmark Irradiation source optimization and received dose estimation.

 \checkmark Modeling of final yeast response according to the damage and repair mechanisms.

Experiments:

✓ Determination of the cell cycle stages responsive to DNA repair checkpoint activation and cell cycle arrest.

 \checkmark Determination of the cell cycle stages at witch radiation triggers apoptosis.

 \checkmark Investigation of the prion-proteins influence on radiation induced apoptosis in the cell.

EXPERIMENTS:

Exposing to ionizing radiation (γ , X-ray and UV).

Stages of experiment:

• Irradiation of the cells at appropriate points of the cell cycle.

• Yeast cell population synchronization at particular stages of the cell cycle (sensitive for radiation).

• Determination of the cell cycle progression by Flow Cytometry method.

Available radiation sources:

Electron accelerator (E = 21 MeV) γ^{60} Co (E = 1.173MeV, 1.332MeV, A = 1.9×10¹⁴Bq) γ^{137} Cs (E = 661keV, A = 2.6×10¹²Bq) γ^{57} Co (E = 0.661keV, 122keV, A = 3.7×10⁷Bq) X-ray (10 - 120 keV) UV irradiation (290-100nm range) 253.7nm (performed experiments)

First experiment (previewed) - *irradiation of synchronized yeast cells by* 137 Cs γ *rays.*

SIMULATION MODEL: Radiation - yeast cell response

MCNPX code:

- Monte Carlo N particle transport code.
- Exact irradiation geometry description exact estimation of deposited ionizing radiation dose.

D [MeV/g] × 1.602×10⁻¹⁰ = D [Gy]

- Radiation source optimization for specific yeast cell part (surface or nucleus) in case of α particles.
- Convertation of irradiation energy (and type) using different (W, Ta, Cu or Pb) plates.

Virtual Cell (VC) Radiobiology Software (by <u>R.D. Stewart</u>, PNNL-13579. Version 1.10J):

- Monte Carlo methods are used for nucleotide excision repair of DNA (SSB, DSB) damage.
- Simulations are based on survival data as a function of dose.
- Evaluation of dose yeast response effects.
- Comparison of simulation results with experimental results.

Main instruments and facilities that might compliment COST Action P9 RADAM and WG3:

- UV irradiation facility (Vilnius University)
- Irradiation by ⁶⁰Co γ rays (Oncology center in Lithuania)
- Linear electron accelerator (Oncology center)
- ⁵⁷Co γ source for low dose irradiation (Institute of Physics)
- X-ray tube (Vilnius University)

• Laboratory of yeast controlling parameters investigation (alterations in cell division, cell growth and evolution, Vilnius University).

- DNA analysis by flow cytometer (Immunology Institute)
- Gas Isotope Ratio Mass Spectrometer with chromatograph (Institute of Physics, expected on second half of 2004)

Thank YOU !