

Radiation Damage in Physiological

Environments

Nigel Mason The Open University, United Kingdom

Paulo Limão-Vieira New University of Lisbon, Portugal

Atomic Force Microscope

The AFM works by scanning a fine ceramic or semiconductor tip over a surface much the same way as a phonograph needle scans a record.

The tip is positioned at the end of a cantilever beam shaped much like a diving board. As the tip is repelled by or attracted to the surface, the cantilever beam deflects

DNA

Part of an image of DNA taken using contact mode under propanol.

In future we can use AFMs to manipulate DNA !

High Resolution AFM of DNA

•Contact mode AFM imaging of double-stranded DNA. The thickness of non-supercoiled loop is consistent with the duplex diameter. Portions of the double-stranded DNA were teased out by increasing the AFM loading force

Site specific binding of DNA endonucleases to a plasmid immobilised on a mica surface

Scanning Tunnel Microscope

Tunnelling current from fine metal tip interacts with substrate

Single Molecule Engineering

Crossed molecular beam set-up for atom-molecule collisions To be set up in Lisbon !

