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STMS Visit Report 

 

In the recent years, the photophysics of DNA nucleobases has attracted the 

attention of many workers. The availability of spectroscopic results at 

femtosecond resolution has stimulated several theoretical studies, of which aim 

was to interpret such data and eventually to understand the photophysics of 

these important building blocks of life1. Studies on cytosine,2-4 5-fluoro cytosine,5 

and adenine,6 have shown that conical intersections geometries are involved in 

the decay from the excited states of these molecular systems. In these studies 

mechanisms involving fast decays from excited states through conical 

intersections were proposed to rationalize the ultra-short fluorescence lifetimes 

of DNA nucleobases. Conical intersections have a key role in the ultrafast decays, 

as they provide direct access from the excited state to the ground state. 

 

The study of the photochemistry and photophysics of a given molecular system 

is often carried out at the CASSCF level of theory, which allows for a balanced 

treatment of the ground and excited states. However, at this level of theory to 

carry out an optimization of conical intersection geometries for large systems, 

such as a DNA nucleobase, may become expensive or even prohibitive. Thus, in 

order to study molecular system of biological interest, efficient algorithms 

become mandatory. The purpose of the STMS visit has been to improve the 

algorithm currently available in the Gaussian package. 

 

The conical intersection algorithm currently implemented in Gaussian package 

was designed by Bearpark et al.8. In this algorithm the Hessian, necessary to 

carry out a standard optimization based on the Newton-Raphson method, is an 

approximated Hessian. The update of this matrix is carried out by means of a 

gradient obtained as linear combination of the gradient difference vector and the 

excited-state gradient projected onto the intersection space. An ill-conditioned 
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Hessian seems to be the major cause of the algorithm failures. Thus, a more 

accurate definition of the intersection space gradient as well as of the 

intersection-space Hessian could improve drastically the algorithm.  

 

Recently we have presented elsewhere a second–order description of conical 

intersections9-12. In these studies, the intersection-space Hessian was defined and 

analytically computed. Thus, our proposal for the applicant’s SMTS visit was to 

exploit the insight gained from the analysis of the conical intersection at the 

second order to the optimization related issues in order to define a more efficient 

algorithm to optimize conical intersection geometries. 

 

During the STMS visit of the candidate a new algorithm for conical intersection 

has been implemented in a development version of Gaussian7. The implemented 

algorithm is partly based on the theoretical work previously proposed by 

Anglada et al.13 In that work, a “reduced Hessian” was proposed to compute the 

Newton-Raphson step in the intersection-space. Such matrix corresponds exactly 

to the intersection-space Hessian that we have recently proposed8-11.  

 

As we will show below, the algorithm proposed by Anglada et al. is capable to 

provide an accurate description of the potential energy topology of the crossing 

seam. However, such methodology considers the branching space only at the 

first order, through the so-called parabolic approximation10. Thus, the algorithm 

proposed in that study is fairly slow in approaching the crossing seam. We have 

then decided to implement a hybrid algorithm. In the first part of the 

optimization, i.e. when the seam is to be approached, the Bearpark algorithm7 is 

used. Subsequently, when a point close to the crossing seam is found the 

Anglada-Bofill algorithm13 is adopted to carry out the intersection space 

optimization. The hybrid algorithm proposed here can be thought of as an 

application of the penalty function method with non-constant penalty 
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parameters14. In the first part of the optimization, when the Bearpark algorithm is 

used, the gradient and the Hessian used are the gradient and Hessian of an 

augmented Lagrangian14 with penalty factor set to 2. Once we are in the region of 

the crossing seam (the energy difference is smaller than a certain threshold) such 

penalty parameter is then set to zero. Consequently, the gradient and the Hessian 

of the new Lagrangian function equal the gradient and the Hessian proposed by 

Anglada et al.  

 

The hybrid method proposed uses the two algorithms in different regions of the 

potential energy surface. However, from a strictly theoretical point the two 

algorithms should perform equally well along the intersection seam. There is 

therefore no apparent reason to implement the Anglada algorithm in addition to 

the Bearpark algorithm already present. Nevertheless, in practice the Hessian 

computed with the composite gradient used in the Bearpark algorithm fails to 

give the correct curvature of the intersection seam. Therefore the step taken 

within the intersection-space is often too large and the degeneracy is lost.  

 

We finally mention that the hybrid conical intersection optimization algorithm 

was implemented such that the optimization is entirely carried out in redundant 

coordinates, as suggested by Peng et al.15. Preliminary tests show the promising 

potentialities of this hybrid algorithm, as we will now discuss.  

 

The implemented algorithm has been tested on the S0/S1 crossing seam of 

benzene. The same seam had been used as benchmark for the algorithm 

currently implemented in the commercial version of Gaussian, i.e. the Bearpark 

algorithm7. In that study as well as in the one proposed here, the calculations 

were carried out at the CASSCF level of theory, with a six electron and six 

orbitals active-space and a STO-3G basis set. In this study, a conical intersection 

geometry is considered converged when the largest component of the 
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intersection-space gradient is smaller than 0.00045 a.u. and the RMS of the same 

vector does not exceed 0.00030 a.u.. In addition to the gradient, also the 

maximum component of the Newton-Raphson displacement is checked.  
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Figure 1 – Global convergence of an optimization of the S0/S1 conical intersection of benzene. The 

results obtained with the Anglada-Bofill algorithm (line and filled circles), with the Bearpark 

angorithm (dotted line) and the proposed hybrid algorithm (bold line) are reported. 

 

A geometry is considered converged when the largest component of such a 

displacement is smaller than 0.0018 a.u. with RMS 0.0012 a.u..  In the application 

reported here, the hybrid algorithm used the Bearpark gradient and Hessian in 

the regions where the energy difference between the two states was bigger than 5 

milliHartrees. 

 

In Figure 1, the global convergence of the benzene S0/S1 conical intersection 

optimization computed with the Bearpark, the Anglada-Bofill and the hybrid 

algorithm is reported. The three conical intersection optimizations were started 

from a benzene structure obtained by distorting slightly the minimum structure 

(Figure 2a) on the S1 potential energy surface16. All the three algorithms located 

the same conical intersection geometry (Figure 2b). Nevertheless the number of 
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steps required by the algorithms to converge is considerably different. The 

hybrid algorithm is the fastest algorithm to converge (Figure 1) and is also 

capable to better retain the degeneracy between the two crossing states.  
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Figure 2 – Starting benzene geometry (a) and optimized S0/S1 conical intersection geometry (b). 

All the angles (italic) are reported in degrees, while the C-H (underlined) and C-C bonds are 

reported in Angstrom. 

 

To emphasize this last point, in Figure 3, the difference of the energies of the S0 

and S1 states of benzene is shown. The hybrid algorithm keeps diminishing 

constantly the energy gap between the two states as the optimization proceeds. 

In addition, the proposed algorithm shows fewer oscillations of the energy 

difference values. This result is consistent with having a more accurate 

intersection-space Hessian. 

 

In summary, from this preliminary test the hybrid algorithm shows a faster 

convergence to an optimized conical intersection, presumably, due to a better 

estimation of the approximated Hessian. These results are encouraging and 

suggest that the use of the implemented algorithm may be involved successfully 
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in the optimization of conical intersection geometries for large systems, such as 

DNA nucleobases. In a further visit, the applicants will begin the investigation of 

the intersection seam of some DNA bases using the implemented algorithm. 
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Figure 3 – Energy Difference between S0 and S1 states in benzene during the conical intersection 

optimization. The results obtained with the Anglada-Bofill algorithm (line and filled circles), with 

the Bearpark angorithm (dotted line) and the proposed hybrid algorithm (bold line) are reported. 

 

In addition, further tests will be run, in order to test the validity of the method in 

circumstances where the crossing states have different spin symmetries and give 

rise to, for instance, singlet-triplet crossings. 

 

We conclude mentioning that the results of the research carried out by the 

applicant during his SMST visit and partly reported here are part of a manuscript 

in preparation. 
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