

Beam studies with coherent THz Radiation at ANKA

Marcel Schuh On behalf of the ANKA THz-Group

Laboratory for Applications of Synchrotron Radiation (LAS) / Institute of Synchrotron Radiation (ISS)

www.kit.edu

Outline

Introduction

- Measurements possibilities at ANKA
- Low-α optics at ANKA
- Observation of CSR in THz range
- Analysis of microwave radiation at ANKA
- Bunch length and shape diagnostics at ANKA
- Future Projects
 - Electro-Optical-Sampling (EOS) at ANKA
 - Flute

Summary

Measurements possibilities at ANKA

Low-αc Optics at ANKA

Coherent synchrotron radiation (CSR) is emitted, if the bunch length is shorter than or equal to the wavelength

• Vacuum chamber suppression cutoff:

$$\lambda_{\rm cutoff} \approx 2h \sqrt{\frac{h}{\rho}}$$

short bunches are needed for CSR

Dedicated optics with negative dispersion in the long and short straight sections can be applied:

$$\alpha_c = \frac{1}{L} \oint \frac{D(s)}{\rho(s)} ds$$

Bunch length can be tuned due to:

$$\sigma_s \propto \sqrt{\alpha_c}$$

Procedure: Injection \Rightarrow Ramping to 1.3 GeV \Rightarrow "Squeeze" ($\alpha_c [10^{-3}]$: 8.5 \rightarrow 0.46)

THz Detector System

- Hot Electron Bolometer (HEB) detector
- Based on: SC niobium nitride
- Response time < 160 ps</p>
- Spectral range 150 GHz 3 THz

high temporal resolution of HEB allows to study signals from individual bunches in multiand single bunch environment

courtesy V. Judin

Current Dependent Longitudinal Instabilities

"Bursts" of radiation can be observed using fast THz detector above the bursting threshold

Simulations of the microbunching instability using Vlasov-Fokker-Planck solver

geometrical impedance plays an important role for CSR!

Low cost Low Noise Block (LNB) device used as detector (10.7 - 12.75 GHz)

cooperation with F. Caspers, CERN

Signal depends strongly on the bunch length

A Schottky diode allows to determine the power of the LNB signal

continuous monitoring bunch length changes possible

The LNB signal of a single bunch shows spikes corresponding to ring structures

Marcel Schuh - Beam studies with coherent THz Radiation at ANKA - ESLS XIX 2011

Filling Pattern Measurement

- Time-correlated single photon counting (TCSPC) using APD at new visible light diagnostics port
- Low noise level and larger dynamic range compared to existing analog filling pattern measurement devices (stripline)

Bunch Length and Shape Diagnostics

Observations using Streak Camera

FLUTE: A Test Experiment

 Allow small scale tests of THz generation, compression, radiation transport and instrumentation, ...

Outline:

- Photo injector (CTF 3 type)
- S band normal conducting linac
- Chicane compressor
- THz beamline
- Use existing bunker

Output Energy	< 50	MeV
Bunch charge	≤ 3	nC
Rep. Rate	10-100	Hz
Used bandwith	0.05 - 5	THz

- Status: design study in cooperation with PSI
- Official Project Start: 2013

PAUL SCHERRER INSTITUT

FLUTE: A Test Experiment

 Allow small scale tests of THz generation, compression, radiation transport and instrumentation, ...

•Outline:

- Photo injector (CTF 3 type)
- S band normal conducting linac
- Chicane compressor
- THz beamline
- Use existing bunker

- Status: design study in cooperation with PSI
- Official Project Start: 2013

LA3NET - PhD Positions

- Measurement of the bunch shape with electro-optical sampling in an electron accelerator
- Precision determination of electron beam energy with Compton backscattered laser photons at ANKA

http://www.liv.ac.uk/la3net/

Summary

- Different diagnostics devices are used to explore the radiation spectrum in the microwave, THz and visible range
- For short bunch operation CSR is a important issue which depends on:
 - Bunch current
 - Impedance
- Microwave range provides information on:
 - Bunch length from bunch spectrum
 - Structure of vacuum chamber
- Short bunches are very useful for diagnostics

 Future projects to explore the THz-Regime and beam properties more precisely

Thank you for your attention!

Acknowledgments:

KIT ISS / LAS, Karlsruhe, Germany:

V. Judin, N. Hiller, A. Hofmann, B. Kehrer, M. Klein, S. Marsching, S. Naknaimueang, M. Nasse, N.J. Smale, E. Huttel, A.-S. Müller

KIT IMS, Karlsruhe, Germany:

P. Probst

DLR, Berlin, Germany:

A. Semenov

MLS, Berlin, Germany:

M. Ries

SLS, Villingen, Switzerland: P. Peier, V. Schlott

CERN, Geneva, Switzerland:

F. Caspers

ANKA Storage Ring

Key parameters:

- Circumference: 110.4 Meter
- RF-frequency: 500 MHz
- Revolution time: ≈ 368 ns
- Harmonic number: 184
- Lattice: double DBA

Normal operation mode:

- Beam energy 2.5 GeV
- Multi bunch mode (up to 200 mA)
- Bunch length > 30 ps

Current Dependent Longitudinal Instabilities

courtesy V. Judin

Multibunch Effects

THz emission depends on filling pattern

Single bunch response

- Fundamental mode of vacuum chamber at ANKA: 2.21 GHz
- $v_g \approx 0.98c$ for the LNB frequency band (10.7 12.75 GHz)

Are spikes in LNB signal due to structures of the vacuum chamber?

CSR in microwave range

for Gaussian bunch shape in free space

Bunch Compression & E-Field

Simulation of electron beam with ASTRA & CSRtrack

Marcel Schuh - Beam studies with coherent THz Radiation at ANKA - ESLS XIX 2011