Low vertical emittance at the SLS

Masamitsu Aiba, Michael Böge, Natalia Milas, Andreas Streun
Paul Scherrer Institut, Villigen, Switzerland

SVET collaboration

1. Vertical emittance
 1.1 Quantum limit
 1.2 Coupling

2. Machine preparation
 2.1 BPM roll measurement
 2.2 Knobs for coupling control
 2.3 Emittance monitor

3. Girder realignment
 3.1 SLS dynamic alignment
 3.2 Beam based girder alignment
 3.3 Survey based girder alignment

4. Emittance minimization
 4.1 Vertical dispersion measurement
 4.2 Vertical dispersion suppression
 4.3 Coupling correction
 4.4 Orbit manipulation
 4.5 Emittance achievements

Conclusion & Outlook

ESLS XIX meeting, Aarhus, Nov. 23-24, 2011
SVET Collaboration

Test Infrastructure and Accelerator Research Area
www.eu-tiara.eu
Work package 6 “SVET” (SLS Vertical Emittance Tuning)

Partially funded by the European Commission under the FP7-INFRASTRUCTURES-2010-1/INFRA-2010-2.2.11 project TIARA (CNI-PP). Grant agreement no 261905.

SVET main collaborators

PSI → **SLS coupling suppression and control**
Masamitsu Aiba, Michael Böge, Terence Garvey, Andreas Lüdeke, Natalia Milas, Volker Schlott, Andreas Streun

CERN → **CLIC damping ring design**
Fanouria Antoniou, Enrico Bravin, Aurelie Goldblatt, Erk Jensen, Thibaut Lefevre, Yannis Papaphilippou, Federico Roncarolo

INFN/LNF → **Super-B factory design**
Marica Biagini, Theo Demma, Susanna Guiducci, Simone Liuzzo, Fabio Marcellini, Mario Serio

Max-IV Lab → **MAX-IV emittance measurement and coupling control**
Åke Andersson, Jonas Breunlin
1. Vertical emittance

1.1 Quantum limit

- direct photon recoil, \(1/\gamma\) radiation cone

- independent of energy!

- examples:
 - SLS: 0.20 pm
 - MAX-IV: 0.05 pm
 - PETRA-III: 0.04 pm

\(\Rightarrow\) lower limit of vertical emittance

\(\Rightarrow\) quantum emittance \(<\!<\! \)
1.2. Vertical emittance with coupling

A. Franchi et al., *Vertical emittance reduction and preservation in electron storage rings via resonance drive terms correction*, PRSTAB 14, 034002 (2011)

Coupling (diff. and sum resonances) from skew quads, sextupole heaves and quad rolls.

Vertical correctors, bend rolls, quad heaves

Eigen-ε (invariant) → Projected ε (s) → Apparent ε (s) → y'

Vertical dispersion

Projected ε (s) → y'

Apparent ε (s) → y'

Coupling terms: $h_{10010} \& h_{10100}$

Vertical emittance h_{00101}
Vertical emittance properties

- Apparent-ϵ oscillates around the lattice.
 - Oscillation amplitude is lower for low coupling
- Projected-ϵ changes at skew quad kicks.
- Eigen-ϵ is invariant.
- Minimization of apparent ϵ at one location minimizes eigen-ϵ too:

Simulation (TRACY, 100 seeds, SLS with 6 skew quads):
Eigen-ϵ results, when optimizing on beam size at monitor (→) vs. optimizing on eigen-ϵ itself (↑).

Å. Andersson et al., NIM A 592 (2008) 437-446
2. Machine preparation

2.1 BPM roll measurements

- **Methods:**
 - Local bumps (150 μm) with fast orbit feedback: get BPM roll from corrector currents.
 - LOCO fit to response matrix.
- **BPM roll:** 17 mrad RMS.
- **Origin:** electronics.

Spoils measurements of vertical dispersion.

\[\Rightarrow \text{Low level implementation as "3rd BBA constant": BPM sway, heave & roll} \]

\[\Rightarrow \text{M. Böge et al., The Swiss Light Source – a test-bed for damping ring optimization, Proc. IPAC-2010} \]

Correlation of two BPM roll measurements
2.2 Knobs for coupling control

- **120 sextupoles (9 families) with additional coils:**
 - 72 wired as horizontal/vertical orbit correctors.
 - 12 wired as auxiliary sextupoles for sextupole resonance suppression (empirical).
 - 36 wired as skew quadrupoles:
 - 12 dispersive, 24 non-dispersive.

- **Skew quads from orbit bumps in 120 sextupoles:**
 - 72 dispersive, 48 non-dispersive “skew quads”

\[a_2 = 2b_3 y_o \]
2.3 Emittance (beam size) monitor

- \(\pi \)-polarization method: image of vertically polarized visible-UV synchrotron radiation.
- Get beam height from peak-to-valley intensity ratio: lookup-table of SRW simulations.
- Resolution:
 - Beam height \(\pm 0.5 \, \mu m \)
 - Emittance \(\pm 0.7 \, \mu m \) (incl. dispersion subtraction)

Å. Andersson et al., NIM A 592 (2008) 437-446
Existing monitor (364 nm) inside tunnel:
- Aging problems (UV radiation damage?)
- Upgrade: operate at 250 nm for higher resolution ($\rightarrow 3$ μm beam height)

Proposal for new monitor:
- Magnification $\times 2..3$. Reflective optics. Optical table outside tunnel.
3. Girder realignment

3.1 The SLS dynamic girder alignment system

- **Remote** positioning of the 48 girders in 5 DOF \((u, v, \chi, \eta, \sigma)\) by eccentric cam shaft drives.
- 36 dipoles (no gradients) supported by adjacent girders.
 - except 3 super-bends: extra supports
 - except laser slicing insertion FEMTO
- Magnet to girder alignment \(< 50 \ \mu m\)
 - girder rail 15 \ \mu m, magnet axis 30 \ \mu m

\[\text{S. Zelenika et al., The SLS storage ring support and alignment systems, NIM A 467 (2001) 99}\]
3.2 Beam based girder alignment

- 48 girders (shift & angle) = 96 “correctors”
- Response & correction matrices for
 - orbit correction (saves 75% CH, 100% CV strength !),
 - or, vertical dispersion suppression.
- Orbit based remote girder alignment rejected:
 - Mistrust in girder moving procedures.
 - Possible negative impact on user operation.
3.3 Survey based girder realignment

- Girder **heave** and **pitch** from survey
- Align girders to medium line (long wavelength machine deformation is not a problem)
- Fast orbit feedback active ↓ correctors confirm girder move.

M. Böge et al., *SLS vertical emittance tuning*, Proc. IPAC-2011
Corrector strengths before and after girder realignment, and after beam based BPM calibration* (sector 1) (*girder move causes vacuum chamber deformation)

⇒ Factor ≈ 4 reduction of rms CV kick in sector (= 4 girders)
Status (Sep. 2011) : done, partially done, malfunction

Sector 1 2 3 4 5 6 7 8 9 10 11 12

Vertical corrector kick (all CV) 140 \(\Rightarrow\) 81 \(\mu\text{rad}\) rms
(expect \(\approx\)60 \(\mu\text{rad}\) rms after repair of sectors 4,9,11)

\[\uparrow\text{Re-establishment of "train link" between G06 and G07}\]
G07 pitch 70 \(\mu\text{m}\), confirmed by hydrostatic leveling system \(\rightarrow\)
Manual alignment of super-bend between G06/G07
\(\Rightarrow\) Improvement for beam line too.
4. Emittance minimization

4.1 Vertical dispersion measurement

- Vertical orbit as function of energy
- Upgrade of RF oscillator for fast frequency shift
- Prerequisite: determination of BPM roll errors.

Vertical dispersion measurement

Energy range ± 0.3% \((-\Delta f = \pm 920 \text{ Hz})\)

20 points

10 minutes

65 \(\mu\)m resolution
4.2 Vertical dispersion suppression

- 12 dispersive skew quadrupoles \(D_x \approx 33 \text{ cm} \)
- 73 BPMs \(\Rightarrow 73 \times 12\) dispersion response matrix
- Feed in measured \(D_y \Rightarrow \) apply \(\Rightarrow\) measure again.
- Best results up to now: \(D_y \approx 1 \text{ mm RMS} \).

\[
D_y(s) = \frac{\sqrt{\beta_y(s)}}{2 \sin \pi Q_y} \int_C F(s') \sqrt{\beta_y(s')} \cos \left(|\mu(s) - \mu(s')| - \pi Q_y \right) ds'
\]

\[
F(s) = b_2 y_{co} + 2b_3 D_x y_{co} - a_2 D_x + a_1
\]

- Orbit bump in quadrupole
- Orbit bump in dispersive sextupole
- Vertical dipole
- Dispersive skew quadrupole
4.3 Betatron coupling correction

- 24 non-dispersive skew quads.
- From model: coupled response matrix as function of skew quad strength: Jacobian \(\{ \partial \mathbf{R}\mathbf{M}/ \partial a_{2k}\} \).
- 73 BPMs and CH/CV: \(\Rightarrow 146 \times 146 \times 24 \) tensor.
- Rearrange: \(21316 \times 24 \) matrix \(\Rightarrow \) SVD-inversion.
 - Alternative: use only coupled \(\mathbf{R}\mathbf{M} \)-quadrants: \(73 \times 73 \times 24 \) tensor \(\Rightarrow 5329 \times 24 \) matrix.
- Feed in measured orbit response matrix.
- Fit 24-vector \(\{ \Delta a_2 \} \) of skew quad strengths.
- Apply inverse to machine: \(-\{ \Delta a_2 \} \).
- Iterate within model for large errors.
- Compensates also betatron coupling increase from previous vertical dispersion suppression.
4.4 Orbit manipulation

“dispersion free steering”

- Orbit bumps:
 - get skew quads from sextupoles
 - get vertical dipoles from quadrupoles

- Simultaneous suppression of vertical dispersion and betatron coupling.

- Individual corrector method: use all correctors with additional constraints on orbit and optics

- 3-bump method: closed orbit bumps for compatibility with user operation.

- M. Aiba et al., *Coupling and vertical dispersion correction in the SPS, Proc. IPAC-2010*
- Application of the individual corrector method:
- Reduction $D_y = 1.4 \rightarrow 1.1 \text{ mm RMS.}$
- Orbit $310 \mu\text{m RMS.}$
- Dispersion spikes resistant to correction \Rightarrow steps between girders

- Recent (Aug. 30) MD-shift ($S. \text{ Liuzzo, M. Aiba, M. Böge}$): \Rightarrow vertical emittance 3.6 pm with all skew quads off.
4.5 Emittance achievements

- Best result up to now (March 16, 2011):

a) coupling correction
b) vertical dispersion suppression \rightarrow 1.4 mm RMS
c) 2 iterations of coupling correction
 ! no orbit manipulations

\Rightarrow Beam height $5 \pm 0.5 \, \mu m$ RMS $\Rightarrow \varepsilon_y = 1.9 \pm 0.4 \, pm$

(dispersion not subtracted)
Outlook

- **Next steps**
 - repair malfunctioning girder movers and realign
 - iterate further dispersion and coupling correction
 - orbit manipulations on top of skew quad correction

- **Emittance monitor maintainence & upgrade**
 - understand and cure aging problems
 - operate existing monitor at lower wavelength for higher resolution (Dec. 2011)
 - design, construction and commissioning of a new monitor with even higher resolution (2012).