European Synchrotron Light Source workshop XIX

ESRF Operation and Upgrade status report

J. L. Revol
On behalf of the Accelerator & Source Division
Pascal Elleaume

École Normale Supérieure de Physique (Ulm)

Design of the Super-ACO FEL

1986: ESRF: Head of the Insertion Device Group

2001: ESRF: Director of the Accelerator & Source Division

19/03/2011: Accidental death in the French Alps at 55

Pascal was the initiator of the accelerator upgrade
ESRF Upgrade 2009-2018

Funding for a first phase (from 2009 to 2015) secured to deliver:

- Eight new beamlines, with an extension of the experimental hall.
- Refurbishment of many existing beamlines
- Upgrade of the X ray source for availability, stability and brilliance
- Developments in synchrotron radiation instrumentation

While maintaining an operational facility
New buildings

Longer beamlines
Increased capacity

Beginning of works:
October 2011
New buildings

Started !!!
With a long winter shutdown
Accelerator Upgrade

• Upgrade of BPM electronics
 • Improvement of the beam position stability
 • Coupling reduction
 • New position feedback
• 6 m long straight sections
 • No change in magnet lattice
 • Canted straight sections
• 7 m straight sections
 • Lattice symmetry breaking
 • New magnets necessary
• Cryogenic in-vacuum undulators
• Diagnostics developments
• New RF Transmitters
• New RF Cavities
Upgrade of BPM Electronics

Sum signal of the 4 buttons:
- Lifetime monitor
- Instant Fractional-Beamloss monitor

Turn by Turn
(355 kHz, for lattice studies)

First Turn mode
(For injection tuning)

Slow Acquisition
(10 Hz, orbit correction)

224 Libera Brillance

Fast Acquisition
(10 kHz)
For fast global orbit correction

Post-Mortem
(on trigger, now operational)
Coupling reduction

• Achieving lower coupling
 • Better resolution of the response matrices \(\Rightarrow\) improved model
 • New correction method: minimization of Resonance Driving Terms
 • Increased number of skew quad correctors: 32 \(\Rightarrow\) 64

 Down to 3.5 pm

• Maintaining small coupling
 • ID gap variations with magnetic field errors induce varying contributions to coupling (in-vacuum undulators)
 • Local correction of ID magnetic field errors
 • 2 skew quad correctors, lookup table
 • Automatic periodic retuning of the correction

 \[4 \text{ pm} < \varepsilon_z < 5 \text{ pm}\] on medium term (1 week)
Coupling reduction

- Maintaining low emittance during USM: 1 week delivery
New orbit feedback

• Present
 • Slow feedback: 224 BPMs, 96 steerers, every 30 s
 • Fast feedback uses fewer monitors and steerers, (32 dedicated BPMs, 32 dedicated steerers)
 • Combination of the 2 systems is delicate

• Under commissioning
 • Single system from DC to 200 Hz
 • 224 Libera BPMs
 • 96 standard steerers up to 200 Hz (integrated in the sextupoles)
 • New power supplies
 • 10 kHz operation
 • Much better correction of the orbit distortion induced by IDs
One of the 224 Beam Position Monitors

Group of 7 Libera BPMs per cell

4 cabinets each containing 18 corrector channels

One of the 8 Feedback Processors

One of the 96 sextupoles housing the correctors

100µs cycle

Fast Network
First tests of Fast Orbit Feedback

27/09/2011
224 BPMs / 96 steerers
Average over 224 BPMs

Horizontal OFF

Horizontal ON

Vertical OFF

Vertical ON
6 m sections

- 6 m section no canting
 - Standard
 - ID18, ID20, ID14
 - ID 24 full 6m operational with 4 carriages
 - With New 2.5 m in-vacuum undulator
 - ID6
- 6 m Large Angle canting
 - ID30 (± 2.2 mrad)
 - ID16 (± 2.7 mrad)

No change in optics
New vacuum chambers
✓ Modification of cabling, piping,

✓ Transfer of valves, pump transition chambers, bellows, BPM in place of the quadrupoles.

✓ Replacement of upstream and downstream chambers.

✓ Installation a 6 metre ID chamber (pre-conditionned)
5 metre Section standard

4 straight sections already converted to 6 metres.
5 sections to be done in 2012
Steerers for Canted Straights

Permanent Magnet Steerers

- Homogeneous field integral
- Low fringe field
- 11 Steerers manufactured

Steering angles in [mrad]

<table>
<thead>
<tr>
<th>ID</th>
<th>Angle 1</th>
<th>Angle 2</th>
<th>Angle 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID16</td>
<td>-2.70</td>
<td>5.40</td>
<td>-2.70</td>
</tr>
<tr>
<td>ID18</td>
<td>-1.2</td>
<td>2.71</td>
<td>-1.51</td>
</tr>
<tr>
<td>ID23</td>
<td>-0.75</td>
<td>1.5</td>
<td>-0.75</td>
</tr>
<tr>
<td>ID30</td>
<td>-2.2</td>
<td>4.4</td>
<td>-2.2</td>
</tr>
</tbody>
</table>

Collimators:
- dipole x-ray
- on axis beam stop

Double slit

double photon shutter
• New girders
• New quadrupoles
• Individual power supplies
• New vacuum chambers
• 1st symmetry breaking

Goal: Redistribute RF cavities to gain useful straight sections
7 m straight sections
High gradient quadrupoles

- 12 units manufactured by ANTEC
- Needed for 7 m straight sections
- Gradient 26 T/m
- Diameter 66 mm
- Delivered
- Magnetic measurement at ESRF
Stretched wire bench

Measurements
- Fiducialization
- Multipole analysis

Applications
- Lattice magnets
- Insertion devices
- Steerers and correctors
Magnetic measurements

Field integral

- Permanent magnet steerer

Multipoles

- Least square analysis
- Accuracy of $\sim 10^{-4}$ of the main multipole
Cryogenic permanent magnet undulators

Low temperature magnets

25% Higher field

Increased brilliance at high energy

CPMU-II
18 mm period / 6 mm gap
0.99 T @ 150 K
3.0 deg RMS phase error @ 150 K (2.7 deg @ RT)
Beam Diagnostic Developments

Dipole C25-1 X-ray lens Monochromator Scintillator

4.41 m 12.4 m

ID25-XRL

02/Feb/2011
USM (7/8 +1)
32 skew correctors
ID25-b 6.6 pm
ID25-xrl 6.2 pm
IAX 6.4 pm

01/Feb/2011
MDT (7/8 +0)
64 skew correctors
ID25-b 3.6 pm
ID25-xrl 3.7 pm
IAX 4.2 pm
• 300 mA stored during MDT for validation of the accelerator developments and also for tests with some beamlines.

• No user mode at 300 mA before the end of Upgrade phase 1.
Measuring extremely low current detection

1 hour of injection @ 1Hz (3600 injections) : 11 electrons accumulated

- PCTs
- BPMs Liberas
- simple CCD + visible dipole light
- cooled CCD + visible dipole light

N electrons

4 electrons
3 electrons
2 electrons
1 electron
New RF transmitters

Booster RF : 4
150 kW amplifiers

2 five-cell cavities
x 2 couplers

Directional couplers

4 Waveguide switches to
4 water loads

SY: Booster Synchrotron

Existing transmitter room
SYRF

75 kW tower
New RF cavities

Based on 500 MHz BESSY, MLS, ALBA design
[E. Weihreter et al.]
But while preparing the upgrade...

The priority is still machine operation:

795.5 hours (33.1 days) of delivery without a single failure
Filling modes

<table>
<thead>
<tr>
<th>Energy</th>
<th>GeV</th>
<th>6.04</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multibunch Current</td>
<td>mA</td>
<td>200</td>
</tr>
<tr>
<td>in 7/8+1</td>
<td></td>
<td>4 (single)</td>
</tr>
<tr>
<td>Horizontal emittance</td>
<td>nm</td>
<td>4</td>
</tr>
<tr>
<td>Vertical emittance</td>
<td>pm</td>
<td>3.5</td>
</tr>
</tbody>
</table>

91 % of Beamtime available for Timing Experiments
Machine statistics

<table>
<thead>
<tr>
<th></th>
<th>2009</th>
<th>2010</th>
<th>2011</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability (%)</td>
<td>99.04</td>
<td>98.78</td>
<td>98.83</td>
</tr>
<tr>
<td>Mean time between failures (hrs)</td>
<td>75.8</td>
<td>67.50</td>
<td>103.2</td>
</tr>
<tr>
<td>Mean duration of a failure (hrs)</td>
<td>0.73</td>
<td>0.82</td>
<td>1.21</td>
</tr>
</tbody>
</table>

In 2010:
- 5538 hours of beam
- 2000 Research proposals
- ~6300 Users, 1500 Experiments
- ~1800 Referred publications
ESRF brilliance record

Reduction and maintenance of the vertical emittance from 35 pm to 3.5 pm.
Lifetime maintained in excess of 45 hours in multibunch (7/8+1)

- Reduction of the lifetime in multibunch limited to less than 10 hours despite a reduction of the coupling by an order of magnitude
 ==> Still no topping-up envisaged

- The other modes do not benefit from the coupling reduction because the emittance is vertically blown up to get a reasonable lifetime
 ==> Topping up would be valuable
MANY thanks for your attention