Dissociative recombination of protonated methanol

Wolf D. Geppert ALMA Satellite Meeting Aarhus 2006

Methanol in space

- Responsible for maser emission in star-forming regions.
- Evolution indicator in star-forming regions
- Used for determination of kinetic temperature and H₂ density simultaneously.
- From CH₃OH₂+/CH₃OH ratio electron temperature in cometary coma derived.

The Bear Claw Nebula, where a strong methanol maser was detected

Production of methanol in the ISM

Methanol production thought to happen via radiative association followed by dissociative recombination (DR):

$$\begin{array}{rcl} CH_3^+ &+ & H_2O & \rightarrow & CH_3OH_2^+ \\ CH_3OH_2^+ &+ & e^- & \rightarrow & CH_3OH &+ & H \end{array}$$

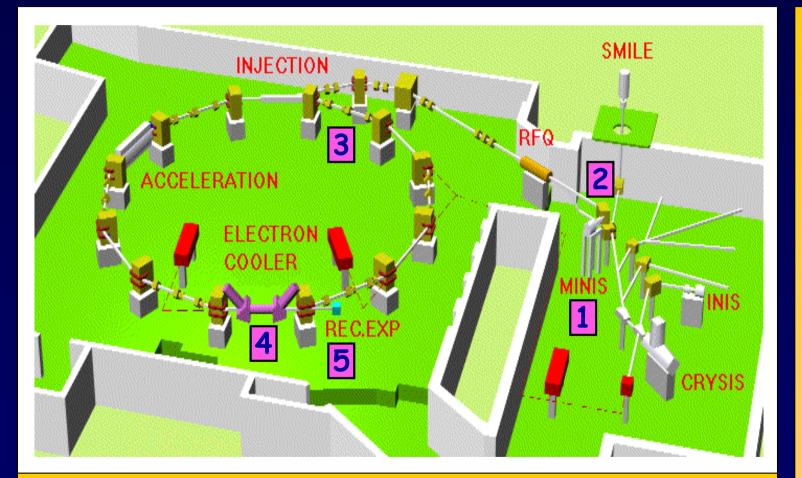
With a high rate of DR, the radiative association rate should be about 1.2 × 10⁻¹⁰ cm³s⁻¹ at 50 K. (Herbst et al. 1985)

Ion trap experiments yielded a an upper limit of 2×10^{-12} cm³s⁻¹ at dark cloud temperatures (Luca et al. 2002).

- CH₃⁺ not detected so far, densities only estimates from models.
- Uncertainties in water densities.
- If the DR of CH₃OH₂⁺ leads to methanol with a branching ratio of close to 100 %.....

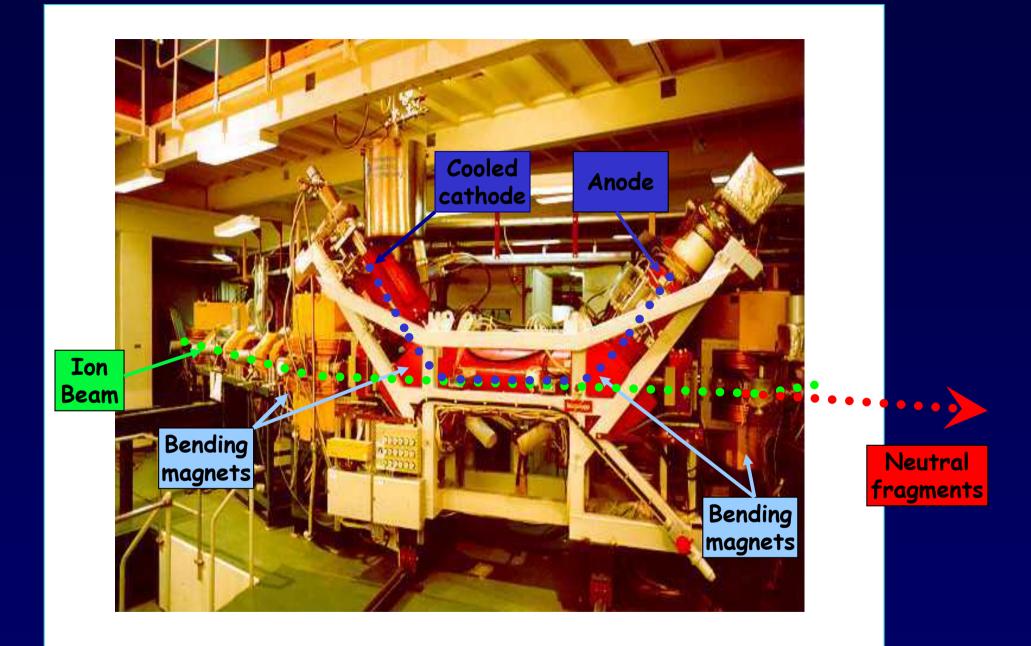
Challenges for measurements of DR branching ratios

- Ample information on reaction rates (afterglow), little on branching ratios.
- Reactive ions must be clearly identified and selected.
- Low collision energies in the interstellar medium must be matched.
- All reaction products should be identified.



- Difficult to obtain reliable potential surfaces due to involvement of highly excited states
- Potential surfaces quite complex in larger molecules even in lower states.
- very few high-level ab initio studies on DR reactions available

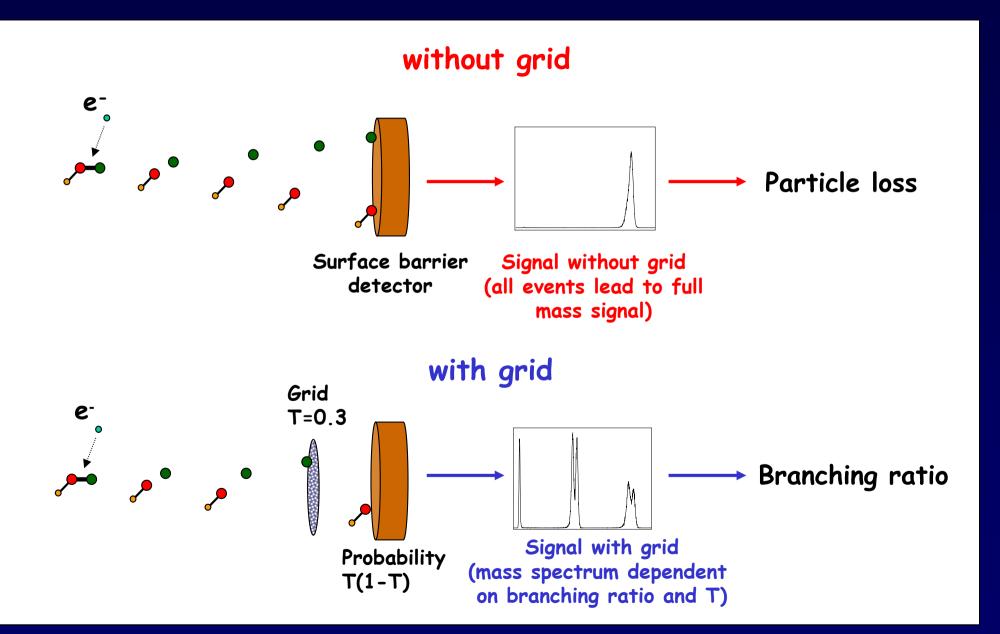
Bates's theory 1986: Dissociative recombinatons favour the pathway(s) which involve(s) least orbital rearrangement, e.g.:


 $CH_3OH_2^+ + e^- \longrightarrow CH_3OH + H$

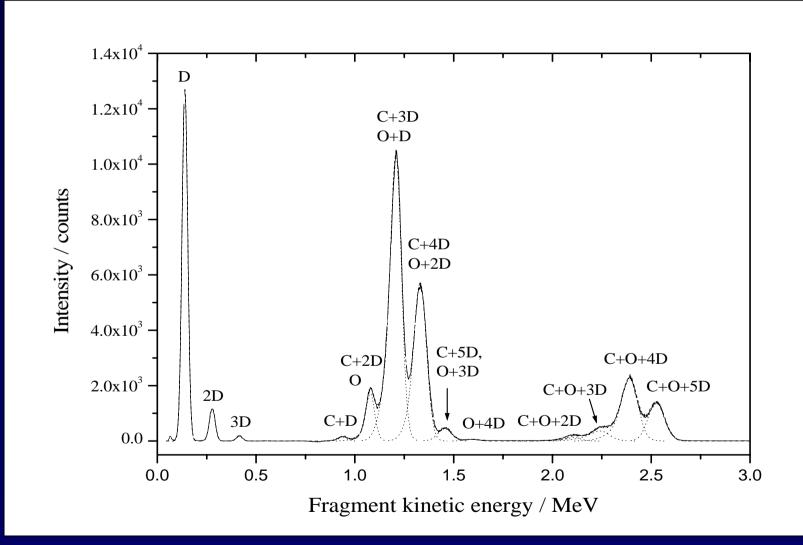
The CRYRING storage ring

Schematic view of CRYRING

Steps during the experiment 1 Formation of the ions in the source 2 Mass selection by bending magnet 3 Injection via RFQ and acceleration 4 Merging with electron beam 5 Detection of the neutral products



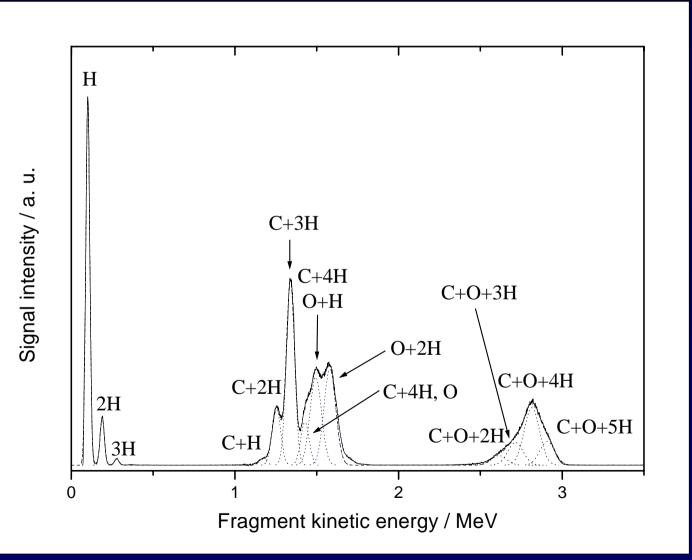
Electron cooler


Advantages of storage rings

- Mass selection of probe ions.
- Measurements at interstellar collision energies possible.
- Detection of all products and product channels.
- Stepless variation of relative kinetic energy.

Grid technique

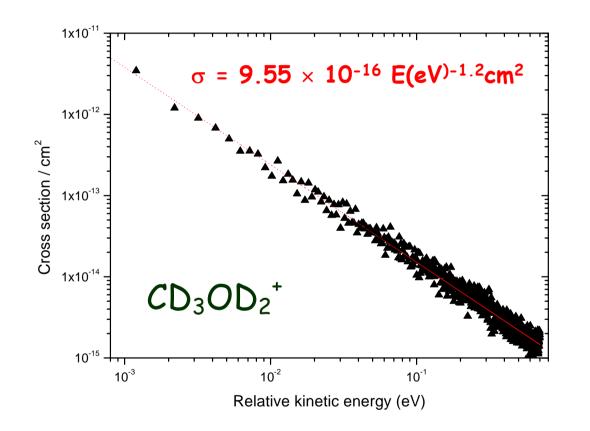
Fragment energy spectrum of CD₃OD₂⁺


Deuterium isotopomere used for better mass resolution

Excergic reaction channels of the DR of CD₃OD₂⁺

CD ₃ OD ₂ ⁺ + e⁻	\rightarrow	$CD_3OD + D$	$CD_3OD_2^+ + e^- \longrightarrow$	$CD_4 + O + D$
	\rightarrow	$CD_3 + OD + D$	\rightarrow	CD ₄ + OD
	\rightarrow	$CD_2 + D_2O + D$	\rightarrow	$CD_2 + OD + D_2$
	\rightarrow	$CD + D_2O + D_2$	\rightarrow	$CD_3 + D_2 + O$
	\rightarrow	$CD_3O + 2D$	\rightarrow	$CD_3 + D_2O$
	\rightarrow	$CD_3O + D_2$	\rightarrow	$CDO + 2D_2$
		$CD_2O + D_2 + D$	\rightarrow	$CDO + D_2 + 2D$
	\rightarrow	CD ₂ O +3D	\rightarrow	CO + 2D ₂ + D
			\rightarrow	$CO + D_2 + 3D$

Some of the channels deliver products with the same mass → indistinguishable.


Branching ratios of the DR of CD₃OD₂⁺ and CH₃OH₂⁺

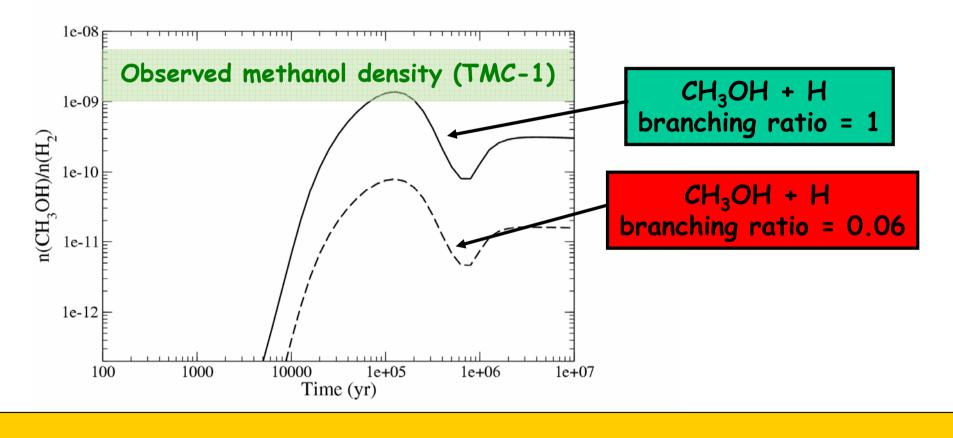
Reaction pathway	Branching ratio	Reaction pathway	Branching ratio
CD ₃ OD + D	0.06	CH ₃ OH + H	0.03
$CD_3 + D_2O$	0.11	$CH_3 + H_2O$	0.09
(CD4 + OD)	0.11	CH4 + OH	0.00
$CD_3O + D_2$	0.05	$CH_3O + H_2$	0.07
$CD_3 + OD + D$	0.59	$CH_3 + OH + H$	0.51
$CD_2 + D_2O + D$	0.16	$CH_2 + H_2O + H$	0.21
$(CD_4 + O + D)$		CH₄ + O + H	0.00
$CD + D_2O + D_2$	0.01	$CH + H_2O + H_2$	0.00
$CD_3O + 2D$	0.00	CH ₃ O + 2H	0.00
$CD_2O + D_2 + D$	0.02	$CH_2O + H_2 + H$	0.09
CD2O + 3D	0.00	CH₂O + 3H	0.00

Distribution of 2-, 3- and 4-body processes

Processes	Sum of branching ratios (CD₃OD₂ ⁺)	Sum of branching ratios (CH₃OH₂ ⁺)
2-body	0.22	0.19
3-body	0.78	0.81
4-body	0.00	0.00

Cross sections of the DR processes

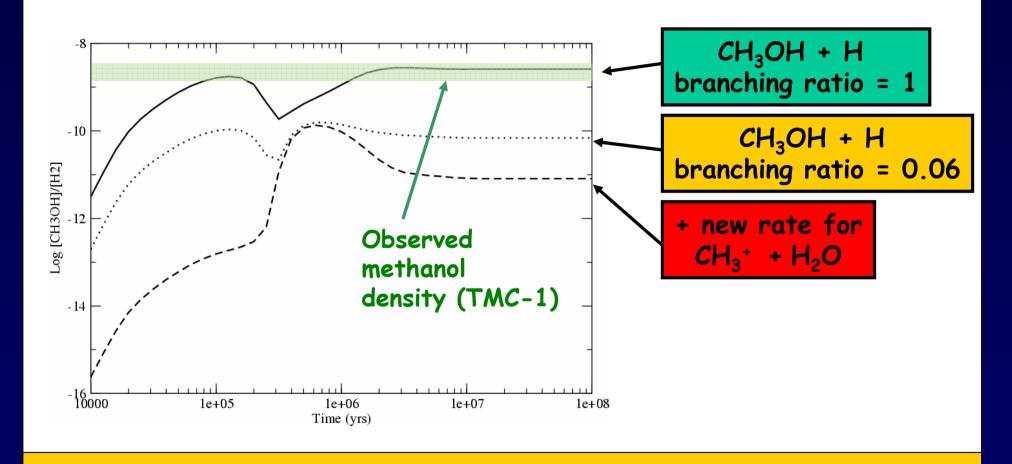
Cross-section vs. collision energy


From the cross-section one is able to work out the thermal reaction rate $(CD_3OD_2^+)$:

k = 9.11 × 10⁻⁷ (T/300)^{-0.63} cm³s⁻¹

For the undeuterated isotopomer (CH₃OH₂⁺):

k = $8.91 \times 10^{-7} (T/300)^{-0.59} cm^3 s^{-1}$


Model calculations

UMIST (Rate99) model predictions for methanol density in TMC-1

If one includes the new rates for the radiative association of CH_3^+ and H_2O_1 , (Luca et al. 2002) the peak methanol relative abundance sinks to 7×10^{-13} .

New UMIST model

UMIST (Rate04) model predictions for methanol density in TMC-1

Main gas phase route to CH_3OH is now $CH_3CHO + H_3^+ \rightarrow CH_3OH + CH_3^+$ k = 1.4 × 10⁻⁹cm³s⁻¹ at 300K

Conclusions

- Three-body break-ups dominate.
- Production of CH_3OH only 3 % (CD_3OD only 6 %).
- No big isotope effects
- Gas-phase mechanism for interstellar methanol very unlikely.

In line with the following facts:

- Formation of methanol on CO ice surfaces possible at 10 K. (Watanabe et al. 2004)
- Correlations between CO and methanol have been found to be strong in hot core regions (Bisschop et al. 2005)

 Models including grain surface desorption reproduce methanol densities (Herbst 2006)

Can we close the books ?

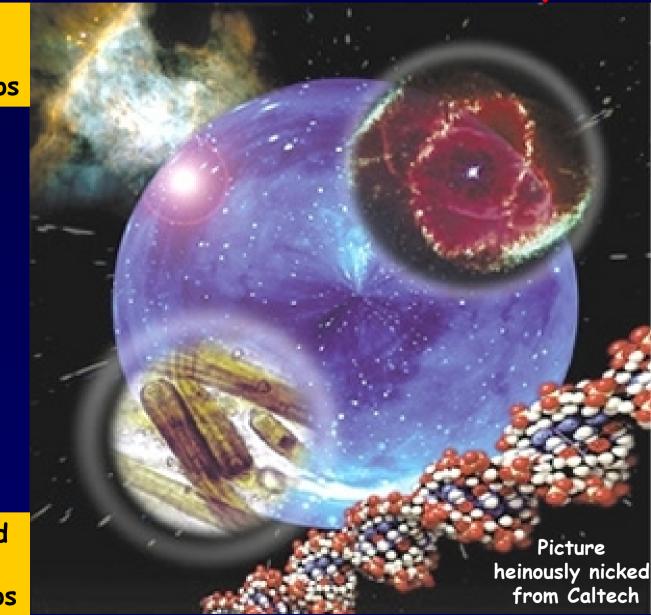
- Anticorrelation of CO and CH₃OH in dense clouds. (Buckle, 2006)
- No experimental evidence for surface desorption of freshly formed methanol

DR of $(CD_3)_2OD^+$

Similar mechanism to methanol postulated for dimethyl ether.

Similar problems ?

YES !


Production of $(CD_3)_2O$ only 6 %)!

AND:

Grain surface process for formation of dimethyl ether unlikely (Ehrenfreund and co-workers, 2006)

Graduate school Astrobiology at Stockholm University

Physics 2 Ph.D studentships

Astronomy 2 Ph.D studentships

An Andrew Molecular Biology 2 Ph.D and astudentships

www.astrobiology.physto.se

Geology and 2 Ph.D studentships

Acknowledgments

- The Scientific Committee of this meeting for the kind invitation.
- The Molecular Physics group at the University of Stockholm: Ahmed Al-Khalili, Anneli Ehlerding, Fredrik Hellberg, Mats Larsson, Fabian Österdahl, Richard Thomas and Magnus af Ugglas.
- The CRYRING team at the Manne Siegbahn Laboratory: Gulliermo Andler, Håkan Danared, Anders Källberg, Andras Paál, Ansgar Simonsson et al.
- Tom Millar, Helen Roberts (University of Manchester).
- Swedish Space Board and Swedish Research Council for funding.