High resolution spectroscopy of large molecules

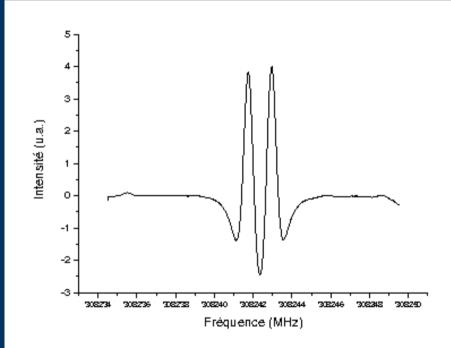
K. Demyk

Laboratoire de physique des lasers, atomes et molécules

Université Lille1

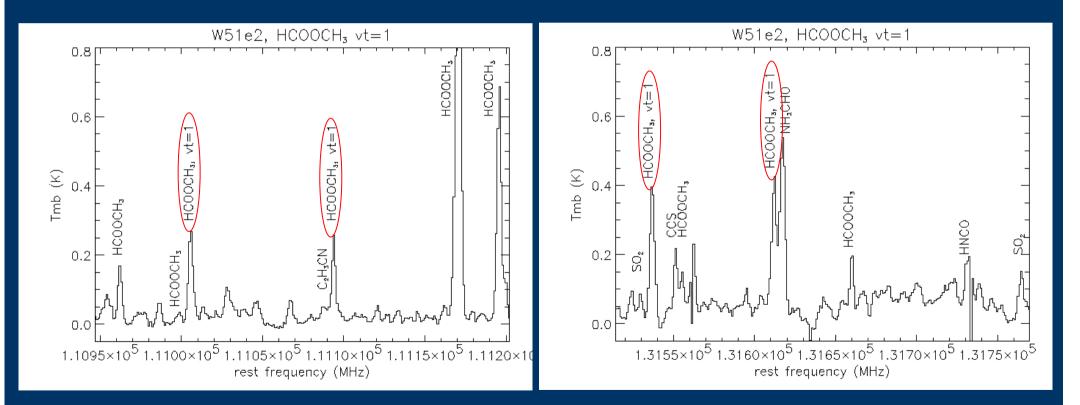
Villeneuve d'Ascq

mm and submm spectroscopy in Lille


- Large wavelength coverage
 - 8-20 GHz with the FTMW spectrometer SIMO
 - 150-600 GHz with BWOs
 - 600 GHz-2.5 THz with the sideband molecular laser spectrometer
- High spectral resolution : 50 kHz
- Stable molecules, radicals, ions can be studied
- Outline of the talk :
 - mm wave study of istotopologues of methyl formate and propionitrile
 - THz study of urea
 - Toward larger molecules

Methyl formate : HCOOCH₃

- Dense and intense rotational spectrum
- Internal rotation of the methyl group splits each rotational line into a doublet (A and E)
- Abundant species in molecular clouds, more than 900 transitions have been identified in interstellar spectra
- Ground state: 3000 lines assigned up to 608 GHz (Plummer et al. 1984, 1986; Ogata et al. 2004)
- First torsionally excited state studied in the 7-200 GHz, up to J=18 and $K_a = 7$ (Ogata et al. 2004)
- DCOOCH₃ studied up to 377 GHz and J=30 (Oesterling et al. 1995)


¹³C methyl formate : H¹³COOCH₃

- Measurements in the frequency range 7 –
 610 GHz
- 290 transitions for the A species up to J=58 and K_{max} =24
- 260 transitions for the E species up to J=58 and K_{max} =24
- Separate analysis for the A and E species
 + global analysis
- Willaert et al. J. Mol. Spec., in press

Torsionally excited HCOOCH₃ in W51e2

• IRAM 30m antenna observations

Torsionally excited HCOOCH₃ in W51e2

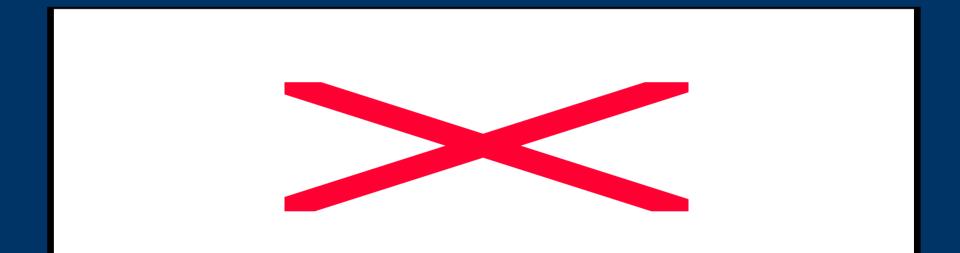
- Estimated abundance and temperature: (waiting for new data coming soon!)
 - Ground state : 35 lines observed, 8<J<35, T_{rot} = 200K, N=1.6x10¹⁶ cm⁻²

- Vt=1 state : 4 lines, T=200K , N=1.2x10¹⁶ cm⁻²

J '	Ka'	K c'	J ''	K a ''	K c ''		E u p c m - 1	Measured freq. (MHz)	Observed freq. (MHz)
12	0	12	11	0	1 1	А	163.8	131536.624	131536.95
12	0	12	11	0	1 1	Е	163.8	131612.344	131612.09
9	1	8	9	1	7	Е	153.4	111094.105	111094.01
9	3	7	8	3	6	Е	156.4	111005.617	111005.83

Propionitrile CH₃CH₂CN

- Abundant in molecular clouds (10¹⁵-10¹⁷ molecules/cm²), more than 500 lines observed in interstellar spectra (Lovas catalog)
- Rich and intense rotational spectrum, large dipole moment (μ_a =3.85, μ_c =1.23 D), studied up to 610 GHz, J<70, K_a<36 (Lovas 1982, Pearson et al. 1994, Fukuyama et al. 1996)
- The excited torsional (212.7 cm⁻¹) and in-plane bend (206.5cm⁻¹) state studied up to 422 GHz and observed in SgrB2 (Mehringer et al. 2004)

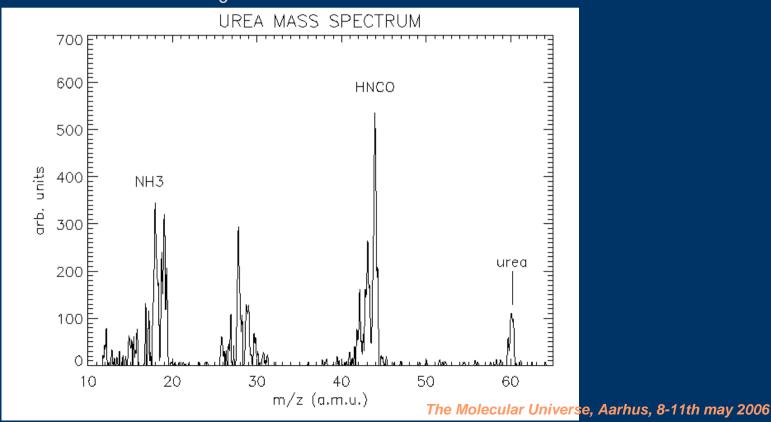

¹³C substituted CH₃CH₂CN

- ${}^{13}CH_{3}CH_{2}CN, CH_{3}{}^{13}CH_{2}CN, CH_{3}CH_{2}{}^{13}CN$
- Intense rotational spectra, large dipole moment (μ_a =3.84 , μ_c =1.37 D)
- Previous studies by Heise et al 1973 in the 8-40 GHz frequency range
- Studied in the range 8-60 GHz at Kiel (H. M\u00e4der) and 150-300 GHz, 150 to 200 assigned transitions up to J=35 and K_a=20 for each species (Demyk et al. in prep)

¹³C substituted CH₃CH₂CN : new set of spectroscopic constants

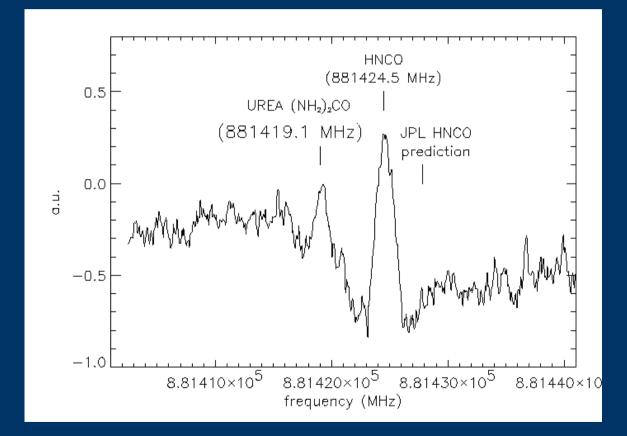
Comparison with JPL predictions

• JPL data are extrapolated from Heise measurements in the 8-40 GHz range. Line frequencies are predicted up to J=10

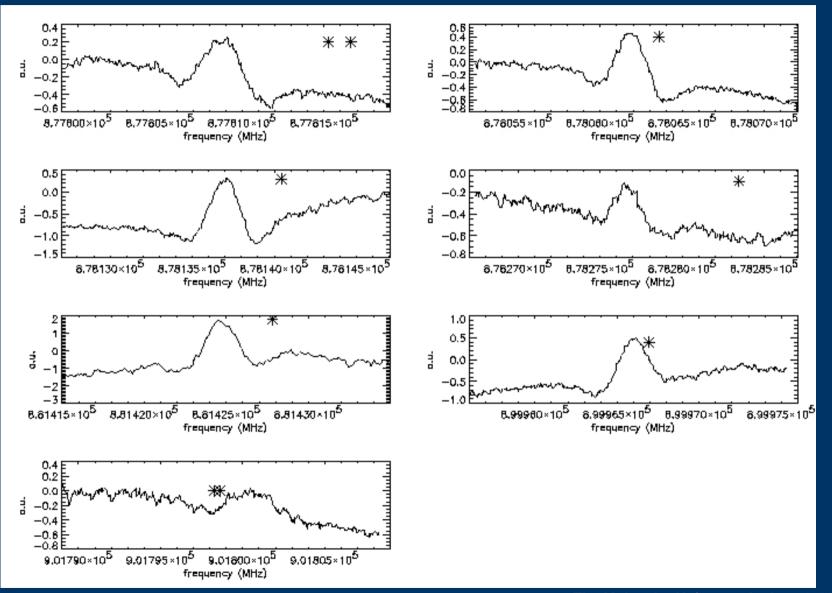

• The new set of constant allows to predict line frequency with an accuracy better than 1 MHz up to ~500 GHz for intense lines and J < 35 (emission maximum at about 337 GHz for $T_{rot} = 200$ K) The Molecular Universe, Aarhus, 8-11th may 2006

Urea $(NH_2)_2CO$ (in progress)

- Not yet observed in mm and submm interstellar spectra
- Possible detection at 6µm in the ices around deeply embedded protostellar objects (Raunier et al. 2004)
- Experimental study of the rotational spectrum by Kretschmer et al. 1996 in the 8-19 GHz frequency range, measurements in Kharkov (V. Iluyshin, E. Alekseev) up to 220 GHz
- Measurements in Lille above 600 GHz

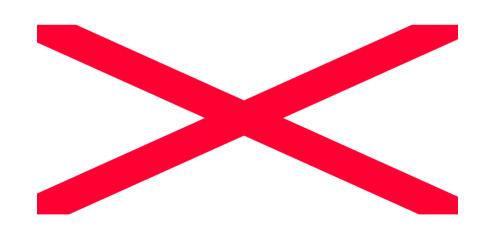

Urea $(NH_2)_2CO$ (in progress)

- Solid at room temperature
- Melting point : 135°C
- Decompose into HNCO and NH₃ above 152°C



Urea $(NH_2)_2CO$ (in progress)

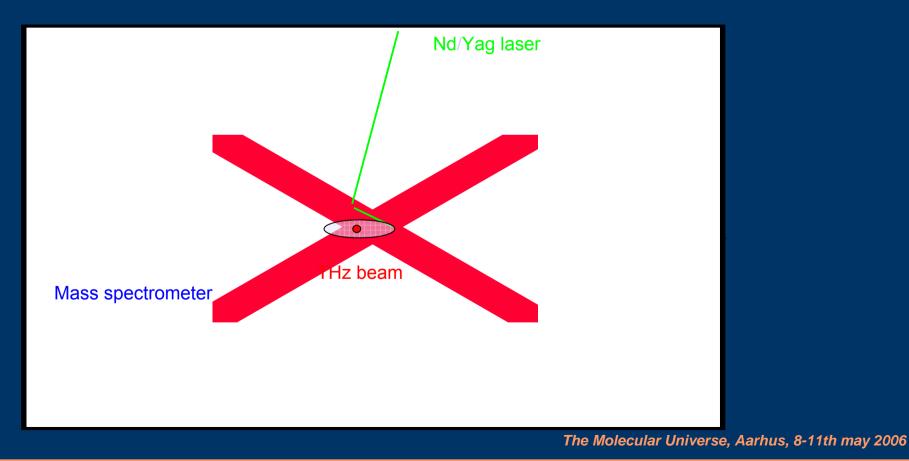
• Tentative detection of one transition @ 881419.1 MHz 41(33,8) 40(32,9)



HNCO

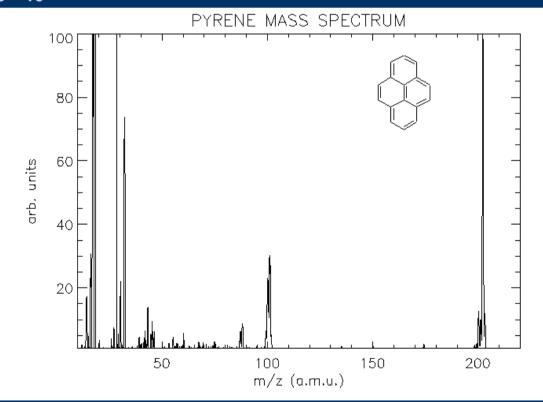
HNCO

- JPL data are extrapolated from measurements in the 8-220 GHz range (Hocking et al. 1975)
- FTIR measurements are from Niedenhoff et al. 1995

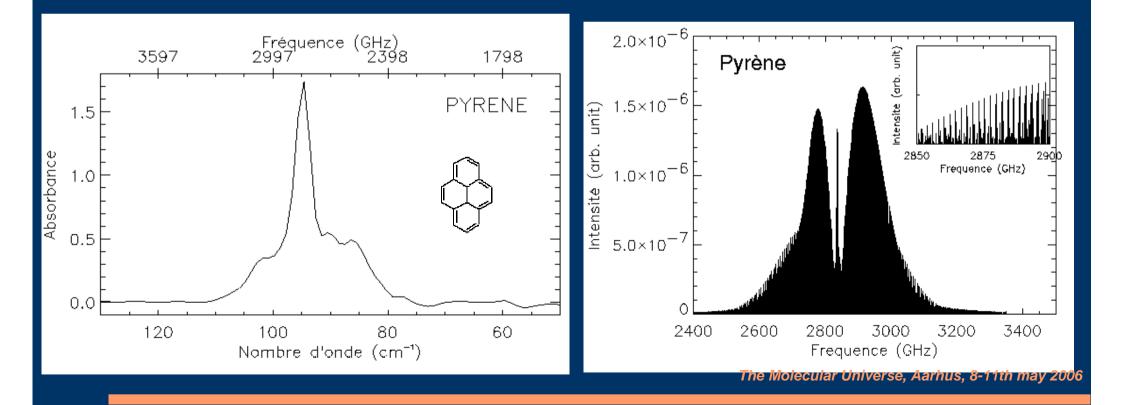


THz spectroscopy of very large molecules

- Study the low frequency torsional and vibrational mode in flexible molecules such as PAHs
- Identification of the molecules from the rotational structure of these modes
- High level ab-initio calculations needed to estimate rotational constants and band positions
- Preliminary measurements with FTIR spectroscopy if possible
- High spectral resolution on the sideband molecular laser THz spectrometer in Lille


THz spectroscopy of very large molecules

Production into the gas phase via laser desorption with a Nd:Yag laser
 @ 1064, 532, 366 or 234 nm, 25 mJ, quadrupole mass spectrometry to control the process


Low frequency mode in pyrene

- Band at 101.13 cm⁻¹ (3031.9 THz); A=1009.93 MHz, B=554.90 MHz, C=358.13MHz
- Pyrene (C₁₆H₁₀) desorbed @532nm, 15Hz, 25mJ

Low frequency mode in pyrene

- . Emission spectrum of pyrene recorded at LPPM (Orsay) (M. Vervloet, O. Pirali) with high resolution FTIR spectrometer
- Calculated rotational structure of the vibrational mode at 101 cm⁻¹

Other possible candidates for spectroscopic studies :

- Pentacene (C₂₂H₁₄) : mode at 39.16 cm⁻¹ (1174 GHz), A=1319.86
 MHz, B=117.34 MHz, C= 107.76 MHz
- Crysene (C₁₈H₁₂) : mode at 50.90 cm⁻¹ (1526 GHz) and 78.51cm⁻¹ (2354 GHz); A=1257.58 MHz, B=262.56 MHz, C= 217.06 MHz
- Acridine (C₁₃H₉N) : mode at 95.09 cm⁻¹ (2850 GHz), A=2153.25 MHz, B=465.12 MHz, C= 382.49 MHz

Other species studied in Lille

- C₂H₄ (ethylene) global analysis (A. Fayit)
- H₂NCH=CHN (aminopropenenitrile) 4-80 GHz (H. Mollendal, J. Demaison, J. Avilez-Moreno, T. Huet)
- H₂CS, 4-80 GHz (H. Mollendal, J. Demaison)

Thanks to my collaborators

PhLAM, Lille, France: L. Constantin L. Aballea G. Wlodarczak J. Demaison L. Margulès, F. Willaert, M. Carvajal LPPM, Orsay, France: M. Vervloet, O. Pirali CESR, Toulouse: C. Joblin LISA, Creteil, France: I. Kleiner, A. Perrin Kiel, Germany: H. Mäder Budapest, Hungaria: A. Csaszar Kharkov, Ukraina: V. Iluyshin, E. Alekseev