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Current (but recent) consensus: PAHs are ubiquitous

• Mid infrared emission features ( at 3.28, 6.3, 7.7, 8.6, 11.3, 12.7
 µm) observed in a variety of environments such as H II regions, 
post AGB stars, planetary nebulae, diffuse ISM… are attributed to 
PAH molecules 

• PAHs are the building blocks of carbon IS dust

• Up to 10-20% of C could be locked up in PAHs

• But their chemistry is poorly known 
How are PAHs formed and destroyed?
What is their role in the formation of carbon dust particles 
How are they processed in space (may explain why no 
specific identification)?
What is their charge state?
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Low temperature Mid-IR spectroscopy of PAH analogs

Neutral PAHs

PAH cations

Allamandola, ApJ 1999

Absorption spectroscopy of PAH 
molecules trapped in Ne matrices

The relative intensities of the bands depend on the PAH charge state
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Laboratory low temperature UV – visible spectroscopy

• The spectra of the PAH 
cations are shifted towards 
the NIR compared to the 
neutrals

• Multi-wavelength lab 
approach to assess the 
possible contribution of the 
PAHs to the Diffuse 
Interstellar Bands



Complex molecules in Space, Aarhus, May 11, 2006

200+ Diffuse Interstellar Bands. Zero identification

• DIBs: Absorption bands
seen in the NUV to NIR 
spectral range in lines of
sight crossing diffuse 
clouds

• Small PAH cations and 
large neutral PAHs have 
been proposed as DIB 
carriers
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Processes governing the PAH charge state

Include:Include:
• photo-ionization (diffuse clouds)
• electron attachment (dense clouds)
• photo-detachment
• electron-ion recombination (main neutralization channel)

But But 
laboratory data are severely lacking (PAHs are difficult to handle)
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Laboratory approaches

• Merged beams with storage rings

Stored ions

Electrons

Heavy ions: challenge to merge high energy ion beam with electron beam
propagating at the same speed



Complex molecules in Space, Aarhus, May 11, 2006

Swarm experiments: flowing afterglow

He+, He2
+, HeM, eAr+, ePAH+, (PAH)2

+, 
fragments+, e

Problem:
low yield of PAH ion production by charge exchange ( PAH + Ar+ PAH+ + Ar )

• Flowing afterglow reactors have been used extensively to study dissociative 
recombination of volatile ions at room temperature
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the apparatus before experiment…….

QMS nose

needle injector
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…….and after.

• Severe problems of condensation onto the walls of the chamber
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Recent evolution: from the FALP-MS to the FFℓℓAPIAPI

to the turbo
molecular pump

to the roots 
pumps

Langmuir
probequadrupole

He (20 l/min)

micro-wave
cavity

Ar (1 l/min)

plate coated with
anthracene

• PAHs coated on a plate are evaporated in the chamber

• PAH ions are generated efficiently by one photon photoionization of PAH 
vapors

•The plasma provides the thermalized electrons 
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Principle

Flow with PAH, PAH +,
He+, Ar+ , and

electrons

Mass 
selection

Multichanel scaler.
records [m/z] = f(time)
t=0 corresponds to laser shot

MCP

Laser shot @ 7.9 eV
PAH + hν → PAH+ + 0.5 eV

Burst of PAH ions
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Time profile of the PAH ion population

Flight time

•Step 1: Measuring PAH(t)

Residual PAH ions

Time (ms)

M
C

S
 c

ou
nt

s
(a

u) PAH photo-ions



Complex molecules in Space, Aarhus, May 11, 2006

Electron density LP measurements
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•Step 2: Measuring ne(z) 

• Notice that the electron 
density should be 
maintained in excess
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ArPAHPAHAr fk +⎯→⎯+ ++

• PAH ion generation

productsePAH ⎯→⎯++ 1α

++ ⎯⎯→⎯+ 2)(dim PAHPAHPAH k

productsePAH ⎯→⎯++ 2
2)( α

−⎯→⎯+ PAHePAH β

• Possible reactions in the chamber:

• dimer formation

•dimer recombination

• electronic attachment

• cation recombination

Chemistry in the afterglow

ePAHhPAH +⎯→⎯+ +ν
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Electron number density [e] 
Measured with mobile Langmuir 

probe. [e] >> [PAH+]

[PAH+](t) measured
with QMS

… which can be written after integration
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The rate of destruction of PAH ions is given by:

Choice of identical
t1 and t2 for 

different [e] 
constant term

The information retrieval journey

Loss by 
diffusion
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Afterglow composition

After laser shot: Excess of [PAH+]

Before laser shot:

[e−] returns 
to steady 
state
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Time evolution of the [PAH+] population for variable ne0
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•Azulene, C10H8, mass 
128,~2x104 laser shots
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and

slope = α

• From a set of PAH ion 
population time profiles & 
electron density
measurements, we can
plot y vs x with



Complex molecules in Space, Aarhus, May 11, 2006

Experimental results

 
Name Anthracene  

(C14H10) 
Pyrene  
(C16H10) 

Azulene  
(C10H8) 

Acenaphthene 
(C12H10) 

Structure 
 

 
  

Mass (amu) 178.23 202.25 128.17 152.19 

IPz (eV) 7.42 7.41 7.43 7.78 

pυ (mbar) 2.7 × 10-5 

 

7.6 × 10-6 

 

1.8 × 10-2  

 

4.0 × 10-3 

 

σPI (Å2) 0.14 0.16 0.10 0.12 

krec (10-6 cm3/s) 2.4 ± 0.8 4.1 ± 1.2 1.1 ± 0.3 0.5 ± 0.2 

•Experimental recombination rates at T=300K are high
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Trends with size

- Spitzer limit with sticking coefficient of 1
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Comparison with models (cont’d)
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Nature of the products

(Le Page 2001)

• Recombination is 
expected to be non 
dissociative for PAH 
cations larger than 
Pyrene
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Suitable candidates are ?

• This experiment can be used for any PAH+

– whose neutral parent has a vertical ionization potential lower than 7.9 eV
– even if electron attachment occurs
– with a molecular mass lower than 1000 amu
– but the vapor pressure must be high enough

• Small quantities of parent neutral are required.
– The price becomes less important.
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Investigations limited by the PAH vapor pressure
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Exploring new ways for producing PAH ions

Excimer VUV 
λ=157 nm

•No plasma: photoelectrons only

Nd YAG @ 266nm
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Preparation of the sample

Sample
preparation

Pellet  (Ø 6mm, 
thickness 1 - 3 
mm)

Glue : 
Araldite

Before exposure

After exposure
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Laser desorption / laser ionization

Cu Plate
PAH Sample

N
d:yag

Excimer

Flow direction

photo-generation of an ion/electron packet



Complex molecules in Space, Aarhus, May 11, 2006

0.50 0.75 1.00 1.25 1.50
0

10

20

30

40

50

60

70
 M

C
S

 c
ou

nt
s

 Y

 

 

t /ms 

Evidence of a two steps mechanism: L2DI

[178+] signal with laser desorption only (NdYAG @ 266nm)
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Evidence of a two steps mechanism: L2DI

[178+] signal with laser ionization (F2 @ 157 nm)
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Evidence of a two steps mechanism: L2DI
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[178+] signal with laser desorption /laser ionization
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Ion packet time of flight 

• [178+] ion packet population 
strongly decrease with flight 
time

• Causes: diffusion and 
recombination with electrons
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Time resolved Langmuir probe measurements

• Measurements of 
photoelectrons 
performed at a fixed 
distance from the 
probe

• Absence of afterglow 
only photo-

electrons

• Slice gives IV 
characteristic for 
given time t
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IV characteristic at t=0.75 ms and fixed z
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ne(t=0.75 ms) = 2 x 108cm-3

Electron number
density derived from
the IV characteristic
and the probe 
geometry
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Electron number density vs. flight time
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Information retrieval journey
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In absence of other ions:
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Numerical simulation (no diffusion)
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Numerical simulation

ne(t=0)= 8 x 108 /cm3

Numerical simulation (incl. diffusion)
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Numerical simulation
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Numerical simulation
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Conclusions 

• L2DI production of PAH ions is 
under test. We are now working 
on robust methods to extract the 
recombination rate from the 
electron density time profile

• This study reveals high PAH+ - e-

recombination rates that tend to 
increase with size

• Open questions :
- nature of the products
- temperature dependence
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